Skip to main content
Log in

Investigation of structural, morphological and electrochemical properties of mesoporous La2CuCoO6 rods fabricated by facile hydrothermal route

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

This work introduces the facile hydrothermal synthesis of double perovskite La2CuCoO6. X-ray diffraction pattern confirmed the formation of a monoclinic phase with P121/c1 symmetry. Transmission electron microscopy results revealed that the self-assembled porous rods were composed of nanocrystallite aggregates. The estimated specific surface area of these mesoporous rods with an average pore diameter of 6 nm was ∼41 m2·g−1. The presence of ions with oxidation states of La3+, Cu2+, and Co2+/Co3+ on the surface of the mesoporous La2CuCoO6 rods was confirmed by X-ray photoelectron spectroscopic analysis. Via cyclicvoltammetry and chronopotentiometry, the electrode fabricated from the mesoporous La2CuCoO6 rods were found to exhibit pseudocapacitive behavior with a specific capacitance of 259.4 F·g−1 at a current density of 0.5 A·g−1. An ∼89% retention in specific capacitance was achieved after 1000 charge/discharge cycles at a constant current density of 4 A·g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. W.J. Yin, B.C. Weng, J. Ge, Q.D. Sun, Z.Z. Li, and Y.F. Yan, Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics, Energy Environ.Sci., 12(2019), No. 2, p. 442.

    Article  CAS  Google Scholar 

  2. N.S. Rogado, J. Li, A.W. Sleight, and M.A. Subramanian, Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6, Adv. Mater., 17(2005), No. 18, p. 2225.

    Article  CAS  Google Scholar 

  3. J.E. Tasca, A.E. Lavat, and M. Gloria González, Double perovskites La2MMnO6 as catalyst for propane combustion, J. Asian Ceram. Soc., 5(2017), No. 3, p. 235.

    Article  Google Scholar 

  4. K. Aswathi, J.P. Palakkal, A.P. Pauloseb, and M.R. Varma, Structural and magnetic properties of multiferroic Y2NiMnO6 double perovskite, Ferroelectrics, 518(2017), No. 1, p. 223.

    Article  Google Scholar 

  5. A.S. Bhalla, R. Guo, and R. Roy, The perovskite structure—A review of its role in ceramic science and technology, Mater. Res. Innovations, 4(2000), No. 1, p. 3.

    Article  CAS  Google Scholar 

  6. J.M. De Teresa, D. Serrate, J. Blasco, M.R. Ibarra, and L. Morellon, Impact of cation size on magnetic properties of (AA′)2FeReO6 double perovskites, Phys. Rev. B, 69(2004), No. 14, art. No. 144401.

  7. A. Kumar and A. Kumar, Electrochemical behavior of oxygen-deficient double perovskite, Ba2FeCoO6−δ, synthesized by facile wet chemical process, Ceram. Int., 45(2019), No. 11, p. 14105.

    Article  CAS  Google Scholar 

  8. Q. Yang, Z.Y. Lu, J.F. Liu, X.D. Lei, Z. Chang, L. Luo, and X.M. Sun, Metal oxide and hydroxide nanoarrays: Hydrothermal synthesis and applications as supercapacitors and nanocatalysts, Prog. Nat. Sci.: Mater. Int., 23(2013), No. 4, p. 351.

    Article  CAS  Google Scholar 

  9. S.L. Chiam, H.N. Lim, S.M. Hafiz, A. Pandikumar, and N.M. Huang, Electrochemical performance of supercapacitor with stacked copper foils coated with graphene nanoplatelets, Sci. Rep., 8(2018), No. 1, art. No. 3093.

  10. T. Purkait, G. Singh, D. Kumar, M. Singh, and R.S. Dey, Highperformance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks, Sci. Rep., 8(2018), No. 1, art. No. 640.

  11. C.F. Lan, S. Zhao, T.T. Xu, J. Ma, S.Z. Hayase, and T.L. Ma, Investigation on structures, band gaps, and electronic structures of lead free La2NiMnO6 double perovskite materials for potential application of solar cell, J. Alloys Compd., 655(2016), p. 208.

    Article  CAS  Google Scholar 

  12. M.N. Iliev, M.V. Abrashev, A.P. Litvinchuk, V.G. Hadjiev, H. Guo, and A. Gupta, Raman spectroscopy of ordered double perovskite La2CoMnO6 thin films, Phys. Rev. B, 75(2007), No. 10, art. No. 104118.

  13. P. Barrozo, N.O. Moreno, and J. Albino Aguiar, Ferromagnetic cluster on La2FeMnO6, Adv. Mater. Res., 975(2014), p. 122.

    Article  CAS  Google Scholar 

  14. D.N. Singh, T.P. Sinha, and D.K. Mahato, Electric modulus, scaling and ac conductivity of La2CuMnO6 double perovskite, J. Alloys. Compd., 729(2017), p. 1226.

    Article  CAS  Google Scholar 

  15. M.T. Anderson and K.R. Poeppelmeier, Lanthanum copper tin oxide (La2CuSnO6): A new perovskite-related compound with an unusual arrangement of B cations, Chem. Mater., 3(1991), No. 3, p. 476.

    Article  CAS  Google Scholar 

  16. R.S. Hu, R.R. Ding, J. Chen, J.A. Hu, and Y.L. Zhang, Preparation and catalytic activities of the novel double perovskite-type oxide La2CuNiO6 for methane combustion, Catal. Commun., 21(2012), p. 38.

    Article  Google Scholar 

  17. J. Chen, Synthesis and Catalytic Activities of Copper Series Rare Earth Double Perovskite-Type Catalysts for Methane Combustion [Dissertation], Inner Mongolia University, 2011.

  18. J. Singh, U.K. Goutam, and A. Kumar, Hydrothermal synthesis and electrochemical performance of nanostructured cobalt free La2CuMnO6, Solid State Sci., 95(2019), art. No. 105927.

  19. H. Kozuka, K. Ohbayashi, and K. Koumoto, Electronic conduction in La-based perovskite-type oxides, Sci. Technol. Adv. Mater., 16(2015), No. 2, art. No. 026001.

  20. A. Kostopoulou, E. Kymakis, and E. Stratakis, Perovskite nanostructures for photovoltaic and energy storage devices, J. Mater.Chem. A, 6(2018), No. 21, p. 9765.

    Article  CAS  Google Scholar 

  21. H.S. Nan, X.Y. Hu, and H.W. Tian, Recent advances in perovskite oxides for anion-intercalation super-capacitor: A review, Mater. Sci. Semicond Process., 94(2019), p. 35.

    Article  CAS  Google Scholar 

  22. J.T. Mefford, W.G. Hardin, S. Dai, K.P. Johnston, and K.J. Stevenson, Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes, Nat. Mater., 13(2014), No. 7, p. 726.

    Article  CAS  Google Scholar 

  23. X.Q. Lang, H.Y. Mo, X.Y. Hu, and H.W. Tian, Supercapacitor performance of perovskite La1−xSrxMnO3, Dalton Trans., 46(2017), No. 40, p. 13720.

    Article  CAS  Google Scholar 

  24. Y. Cao, B.P. Lin, Y. Sun, H. Yang, and X.Q. Zhang, Sr-doped lanthanum nickelate nano-fibers for high energy density, Electrochim. Acta, 174(2015), p. 41.

    Article  CAS  Google Scholar 

  25. N. Arjun, G.T. Pan, and T.C.K. Yang, The exploration of Lanthanum based perovskites and their complementary electrolytes for the supercapacitor applications, Results Phys., 7(2017), p. 920.

    Article  Google Scholar 

  26. S. Hussain, M.S. Javed, N. Ullah, A. Shaheen, N. Aslam, I. Ashraf, Y. Abbas, M.S. Wang, G.W. Liu, and G.J. Qiao, Unique hierarchical mesoporous LaCrO3 perovskite oxides for highly efficient electrochemical energy storage applications, Ceram. Int., 45(2019), No. 12, p. 15164.

    Article  CAS  Google Scholar 

  27. M. Alam, K. Karmakar, M. Pal, and K. Mandal, Electrochemical supercapacitor based on double perovskite Y2NiMnO6 nanowires, RSC Adv., 6(2016), No. 115, p. 114722.

    Article  CAS  Google Scholar 

  28. J. Fu, H.Y. Zhao, J.R. Wang, Y. Shen, and M. Liu, Preparation and electrochemical performance of double perovskite La2CoMnO6 annf-bibers, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 950.

    Article  CAS  Google Scholar 

  29. Y.B. Wu, J. Bi, and B.B. Wei, Preparation and supercapacitor properties of double-perovskite La2CoNiO6 inorganic nanofibers, Acta Phys. Chim. Sin., 31(2015), No. 2, p. 315.

    Article  CAS  Google Scholar 

  30. J. Singh and A. Kumar, Facile wet chemical synthesis and electrochemical behavior of La2FeCoO6 nano-crystallites, Mater. Sci. Semicond. Process., 99(2019), p. 8.

    Article  CAS  Google Scholar 

  31. Y. Liu, Z.B. Wang, J.P. Marcel Veder, Z.Y. Xu, Y.J. Zhong, W. Zhou, M.O. Tade, S.B. Wang, and Z.P. Shao, Highly defective layered double perovskite oxide for efficient energy storage via reversible pseudo-capacitive oxygen — anion intercalation, Adv. Energy Mater., 8(2018), No. 11, art. No. 1702604.

  32. Z.Y. Xu, Y. Liu, W. Zhou, M.O. Tade, and Z.P. Shao, B-site cation-ordered double-perovskite oxide as an outstanding electrode material for super-capacitive energy storage based on the anion intercalation mechanism, ACS Appl. Mater. Interfaces, 10(2018), No. 11, p. 9415.

    Article  CAS  Google Scholar 

  33. M.A. Bavio, J.E. Tasca, G.G. Acosta, and A.E. Lavat, La2NiMnO6 double perovskite nanostructure prepared by citrate route for supercapacitors, Matéria (Rio de Janeiro), 23(2018), No. 2, art. No. art. No. 12132.

  34. Z.H. Wang, Y.H. Liu, Y.Q. Chen, L. Yang, Y. Wang, and M.R. Wei, A-site cation-ordered double perovskite PrBaCo2O5+δ oxide as an anion-inserted pseudocapacitor electrode with outstanding stability, J. Alloys Compd., 810(2019), art. No. 151830.

  35. J. Singh, A. Kumar, U.K. Goutam, and A. Kumar, Microstructure and electrochemical performance of La2ZnMnO6 nanoflakes synthesized by facile hydrothermal route, Appl. Phys. A, 126(2020), art. No. art. No. 11.

  36. F.N. Mansoorie, J. Singh, and A. Kumar, Wet chemical synthesis and electrochemical performance of novel double perovskite Y2CuMnO6 nanocrystallites, Mater. Sci. Semicond. Process., 107(2020), art. No. 104826.

  37. J. Singh and A. Kumar, Solvothermal synthesis dependent structural, morphological and electrochemical behaviour of mesoporous nanorods of Sm2NiMnO6, Ceram. Int., 46(2020), No. 8, p. 11041.

    Article  CAS  Google Scholar 

  38. P. Asen and S. Shahrokhian, A high performance supercapacitor based on graphene/polypyrrole/Cu2O-Cu(OH)2 ternary nanocomposite coated on nickel foam, J. Phys. Chem. C, 121(2017), No. 12, p. 6508.

    Article  CAS  Google Scholar 

  39. S. Kerli, Synthesis, characterization and supercapacitive performances of yttrium doped cobalt oxide films, J. Korean Phys. Soc., 71(2017), No. 7, p. 404.

    Article  CAS  Google Scholar 

  40. Q.Q. Wang, L.P. Ma, L.C. Wang, and D.D. Wang, Mechanisms for enhanced catalytic performance for NO oxidation over La2CoMnO6 double perovskite by A-site or B-site doping: Effects of the B-site ionic magnetic moments, Chem. Eng. J., 372(2019), p. 728.

    Article  CAS  Google Scholar 

  41. A.A. Kumar, A. Kumar, and J.K. Quamara, Cetyltriammonium bromide assisted synthesis of lanthanum containing barium stannate nanoparticles for application in dye sensitized solar cells, Phys. StatusSolidi A, 215(2018), No. 6, art. No. 1700723.

  42. A.A. Kumar, J. Singh, D.S. Rajput, A. Placke, A. Kumar, and J. Kumar, Facile wet chemical synthesis of Er3+/Yb3+ co-doped BaSnO3 nano-crystallites for dye-sensitized solar cell application, Mater. Sci. Semicond. Process., 83(2018), p. 83.

    Article  CAS  Google Scholar 

  43. Y. Yu, W.Y. Gao, Z.X. Shen, Q. Zheng, H. Wu, X. Wang, W.G. Song, and K.J. Ding, A novel Ni3N/graphene nano-composite as supercapacitor electrode material with high capacitance and energy density, J. Mater. Chem. A, 3(2015), No. 32, p. 16633.

    Article  CAS  Google Scholar 

  44. S. Thirumalairajan, K. Girija, V. Ganesh, D. Mangalaraj, C. Viswanathan, and N. Ponpandian, Novel synthesis of LaFeO3 nanostructure dendrites: A systematic investigation of growth mechanism, properties, and bio-sensing for highly selective determination of neurotransmitter compounds, Cryst. Growth Des., 13(2013), No. 1, p. 291.

    Article  CAS  Google Scholar 

  45. P. Burroughs, A. Hamnett, A.F. Orchard, and G. Thornton, Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium, J. Chem. Soc. Dalton Trans., (1976), No. 17, p. 1686.

  46. R.P. Vasquez, X-ray photoemission measurements of La1−xCax-CoO3 (x = 0, 0. 5), Phys. Rev. B, 54(1996), No. 21, p. 14938.

    Article  CAS  Google Scholar 

  47. K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal, and T. Alagesan, Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode, Ceram. Int., 44(2018), No. 16, p. 20075.

    Article  CAS  Google Scholar 

  48. H. Chen, L.F. Hu, M. Chen, Y. Yan, and L.M. Wu, Nickel-cobalt layered double hydroxide nanosheets for high — performance supercapacitor electrode materials, Adv. Funct. Mater., 24(2014), No. 7, p. 934.

    Article  Google Scholar 

  49. F.M.F. De Groot, M. Abbate, J. Van Elp, G.A. Sawatzky, Y.J. Ma, C.T. Chen, and F. Sette, Oxygen 1s and cobalt 2p X-ray absorption of cobalt oxides, J. Phys.: Condens. Matter, 5(1993), No. 14, p. 2277.

    CAS  Google Scholar 

  50. Z.J. Li, W.Y. Zhang, C.S. Yuan, and Y.L. Su, Controlled synthesis of perovskite lanthanum ferrite nanotubes with excellent electrochemical properties, RSC Adv., 7(2017), No. 21, p. 12931.

    Article  CAS  Google Scholar 

  51. J.F. Li, X.R. Hu, D. D. Chen, J. Gu, and Q.S. Wu, Facile synthesis of superthin Co3O4 porous nanoflake for stable electrochemical supercapacitor, ChemistrySelect, 3(2018), No. 33, p. 9622.

    Article  CAS  Google Scholar 

  52. X.F. Lu, D.J. Wu, R.Z. Li, Q. Li, S.H. Ye, Y.X. Tong, and G.R. Li, Hierarchical NiCo2O4 nano-sheets@ hollow micro-rod arrays for high-performance asymmetric super-capacitors, J. Mater. Chem. A, 2(2014), No. 13, p. 4706.

    Article  CAS  Google Scholar 

  53. C.Q. Dong, Y. Wang, J.L. Xu, G.H. Cheng, W.F. Yang, T.Y. Kou, Z.H. Zhang, and Y. Ding, 3D binder-free Cu2O@Cu nano-needle arrays for high-performance asymmetric super capacitors, J. Mater. Chem. A, 2(2014), No. 43, p. 18229.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author Jashandeep Singh thanks NIT Kurukshetra for providing the institute research fellowship. Author Ashok Kumar acknowledges the financial support of the Council of Scientific and Industrial Research (CSIR), New Delhi (India) (F. No. 22(0778)/18/EMR-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Kumar, A. Investigation of structural, morphological and electrochemical properties of mesoporous La2CuCoO6 rods fabricated by facile hydrothermal route. Int J Miner Metall Mater 27, 987–995 (2020). https://doi.org/10.1007/s12613-020-2011-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2011-6

Keywords

Navigation