Skip to main content
Log in

Entropy generation on double diffusive MHD Casson nanofluid flow with convective heat transfer and activation energy

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The viscous and Joule dissipation effects on stagnation point flow of thermally radiating Casson nanoliquid over a convectively heated stretching sheet under hydromagnetic assumptions are discussed. The influence of heat absorption on heat transfer and chemical reaction prompted by activation energy on mass transfer is also considered. The appropriate transformations are implemented for converting the governing partial differential equations into a set of coupled ordinary differential equations. BVP4C routine of MATLAB has been used to solve the coupled nonlinear ODEs. The way fluid velocity, concentration, temperature, Bejan number and entropy generation behave subject to change in the flow parameters, has been discussed through graphs, whereas the important physical quantities such as skin friction coefficient, Nusselt number and Sherwood number are analyzed on the basis of numerical values presented in tables. On the obtained numerical data of Nusselt number, linear and quadratic regression analyses have been performed. It is concluded that for larger values of thermal and concentration buoyancy parameters, fluid velocity tends to decrease inside the boundary layer region. It is also found that plastic dynamic viscosity of Casson nanoliquid tends to reduce the rate of entropy generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. S U S Choi Proc. ASME Int. Mech. Engg. Cong. Expos. 66 99 (1995)

    Google Scholar 

  2. J Buongiorno J. Heat Transfer 128 240 (2006)

    Google Scholar 

  3. S A Farshad, M Sheikholeslami, S H Hosseini, A Shafee and Z Li Microsystem Tech. 25 4237 (2019)

    Google Scholar 

  4. S J Kim, I C Bang, J Buongiorno and L W Hu Bull. Polish Acad. Sci.: Tech. Sci. 66 99 (1995)

    Google Scholar 

  5. K V Wong and O D Leon Adv. Mech. Engg. 2010 519659 (2015)

    Google Scholar 

  6. R S R Gorla and A J Chamkha Nano. Micro. Therm. Engg. 10 81 (2011)

    Google Scholar 

  7. C R Reddy, P V S N Murthy, A J Chamkha and A M Rashad Int J. Heat Mass Transf. 64 384 (2013)

    Google Scholar 

  8. A J Chamkha, S Abbasbandy, A M Rashad and K Vajravelu Meccanica 48 275 (2013)

    MathSciNet  Google Scholar 

  9. P S Reddy, P Sreedevi and A J Chamkha Pow. Tech. 307 46 (2017)

    Google Scholar 

  10. H S Takhar, A J Chamkha and G Nath Int J. Engg. Sci.  37 1723 (1999)

    Google Scholar 

  11. E Magyari and A J Chamkha Int. J. Ther. Sci. 47 848 (2008)

    Google Scholar 

  12. G S Seth, R Singh and N Mahto Ind. J. Tech. 26 329 (1988)

    Google Scholar 

  13. A J Chamkha App. Math. Model. 21 603 (1997)

    Google Scholar 

  14. A J Chamkha Num. Heat Transf.: Part A: Appl. 39 511 (2001)

    ADS  Google Scholar 

  15. H S Takhar, A J Chamkha and G Nath Int. J. Engg. Sci.  40 1511 (2002)

    Google Scholar 

  16. A J Chamkha and A R A Khaled Int. J. Num. Meth. Heat Fluid Flow 10 94 (2000)

    Google Scholar 

  17. A Al-Mudhaf and A J Chamkha Heat Mass Transf. 42 112 (2005)

    ADS  Google Scholar 

  18. A Kumar, R Singh, G S Seth and R Tripathi Int. J. Heat Tech. 36 1430 (2018)

    Google Scholar 

  19. E Elbashbeshy and M Bazid Heat Mass Transf. 41 1 (2004)

    ADS  Google Scholar 

  20. R Nazar, N Amin, D Filip and I Pop Int. J. Engg. Sci. 42 1241 (2004)

    Google Scholar 

  21. P S Reddy and A J Chamkha Adv. Pow. Tech. 27 1207 (2016)

    Google Scholar 

  22. R A Damseh, M Q Al-Odat, A J Chamkha and B A Shannak Int. J. Ther. Sci. 48 1658 (2009)

    Google Scholar 

  23. C Raju and N Sandeep J. Magn. Magn. Mater. 421 216 (2017)

    ADS  Google Scholar 

  24. I Ullah, I Khan and S Shafie Sci. Reports 7 1113 (2017)

    ADS  Google Scholar 

  25. M E M Khedr, A J Chamkha and M Bayomi Non. Anal.: Model. Cont. 14 27 (2009)

    Google Scholar 

  26. E Magyari and A J Chamkha Int. J. Ther. Sci. 49 1821 (2010)

    Google Scholar 

  27. A J Chamkha, R A Mohamed and S E Ahmed Meccanica 46 399 (2011)

    MathSciNet  Google Scholar 

  28. R Ellahi App. Math. Model.  37 1451 (2013)

    MathSciNet  Google Scholar 

  29. A Kumar, R Singh, J. Nanofluids 7 1 (2018)

    Google Scholar 

  30. M M Bhatti, A Zeeshan, D Tripathi and R Ellahi Ind. J. Phys. 92 423 (2018)

    Google Scholar 

  31. A Kumar, R Tripathi, R Singh and G S Seth Ind. J. Phys. 93 1 (2019)

    Google Scholar 

  32. A Bejan Energy 5 720 (1980)

    ADS  Google Scholar 

  33. M Rashidi, S Abelman and N F Mehr Int. J. Heat Mass Transf. 62 515 (2013)

    Google Scholar 

  34. R Ellahi, S M Sait, N Shehzad and N Mobin Symmetry 11 1038 (2019)

    Google Scholar 

  35. A Kumar R Tripathi and R Singh J. Braz. Soc. Mech. Sci. Engg. 41 306 (2019)

    Google Scholar 

  36. S Rashidi, S Akar, M Bovand and R Ellahi Renewable Energy 115 400 (2018)

    Google Scholar 

  37. A Zeeshan, N Shehzad, T Abbas and R Ellahi Entropy 21 236 (2019)

    ADS  Google Scholar 

  38. M I Khan, A Kumar and T Hayat J. Mol. Liq. 278 677 (2019)

    Google Scholar 

  39. M Mustafa, J A Khan, T Hayat and A Alsaedi Int. J. Heat Mass Transf. 108 1340 (2017)

    Google Scholar 

  40. M I Khan, T Hayat, M I Khan and A Alsaedi Int. Comm. Heat Mass Transf. 91 216 (2018)

    Google Scholar 

  41. A Hamid J. Mol. Liq. 262 435 (2018)

    Google Scholar 

  42. M Dhlamini, P K Kameswaran and P Sibanda J. Comput. Design Engg. 6 149 (2019)

    Google Scholar 

  43. N Casson A Flow Equation for Pigment Oil Suspensions of the Printing Ink Type (Oxford: Pergamon Press) (1959).

    Google Scholar 

  44. S Nadeem, R Mehmood and N S Akbar Int. J. Ther. Sci. 78 90 (2014)

    Google Scholar 

  45. Z Abbas, M Sheikh and S S Motsa Energy 95 12 (2016)

    Google Scholar 

  46. A Bejan Entropy Generation Minimization (CRC Press: CRC Press) (1996)

    MATH  Google Scholar 

  47. A Kuznetsov and D Nield Int. J. Heat Mass Transf. 65 682 (2013)

    Google Scholar 

  48. W Ibrahim and O Makinde J. Aer. Engg. 29 04015037 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tripathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Tripathi, R., Singh, R. et al. Entropy generation on double diffusive MHD Casson nanofluid flow with convective heat transfer and activation energy. Indian J Phys 95, 1423–1436 (2021). https://doi.org/10.1007/s12648-020-01800-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01800-9

Keywords

Navigation