Skip to main content
Log in

Characterization of Aqueous Dispersions and Gels Made of Sodium Caseinate and Basil Seed Gum: Phase Behavior, Rheology, and Microstructure

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The interactions between sodium caseinate (NaCas) and basil seed gum (BSG) in the presence of calcium chloride (CaCl2) were investigated. The phase behavior of the mixed aqueous dispersions and their gels revealed a homogeneous mixture, obtained at the higher concentrations of both CaCl2 and BSG. The Herschel-Bulkley model sufficiently fitted the flow behavior of the mixture solution data. Apparent viscosity increased significantly (p < 0.05) by increasing the concentration of BSG, where the addition of CaCl2 had no significant effect on the viscosity of the samples (p > 0.05). Furthermore, there was an increase in thixotropy due to the higher concentrations of BSG and CaCl2. Based on the frequency sweep test, at the low frequencies, a more gel-like behavior was observed in the case of the higher concentrations of either BSG or CaCl2. The rheological and SEM data suggested that the stronger structure of NaCas-BSG gel in the presence of the higher concentrations of CaCl2 was related to the induction of complex formation between the two biopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. C.C. Sánchez, J.M.R. Patino, Food Hydrocoll. 19(3), 407–416 (2005)

    Article  Google Scholar 

  2. E. Dickinson, Colloids Surf. A Physicochem. Eng. Asp. 288(1), 3–11 (2006)

    Article  CAS  Google Scholar 

  3. E. Dickinson, C. Eliot, Colloids Surf. B: Biointerfaces 29(2), 89–97 (2003)

    Article  CAS  Google Scholar 

  4. B. Lo, E. Gorczyca, S. Kasapis, B. Zisu, Ultrason. Sonochem. 58, 104525 (2019)

    Article  CAS  Google Scholar 

  5. A.L.M. Braga, M. Menossi, R.L. Cunha, Int. Dairy J. 16(5), 389–398 (2006)

    Article  CAS  Google Scholar 

  6. A.J. Carr, P.A. Munro, O.H. Campanella, Int. Dairy J. 12(6), 487–492 (2002)

    Article  CAS  Google Scholar 

  7. P. Thomar, T. Nicolai, L. Benyahia, D. Durand, Int. Dairy J. 31(2), 100–106 (2013)

    Article  CAS  Google Scholar 

  8. S. Mirarab Razi, A. Motamedzadegan, A. Shahidi, A. Rashidinejad, Food Hydrocoll. 82, 268–277 (2018a)

    Article  CAS  Google Scholar 

  9. E. Dickinson, Trends Food Sci. Technol. 9(10), 347–354 (1998)

    Article  CAS  Google Scholar 

  10. K. K. T. Goh, A. Teo, A. Sarkar and H. Singh, in Milk Proteins (Third Edition), edited by M. Boland and H. Singh (Academic Press, 2020), pp. 499–535

  11. A.A. Perez, C.R. Carrara, C.C. Sánchez, J.M. Rodríguez Patino, L.G. Santiago, Food Chem. 116(1), 104–113 (2009)

    Article  CAS  Google Scholar 

  12. H. Khalesi, B. Emadzadeh, R. Kadkhodaee, Y. Fang, Food Hydrocoll. 59, 45–49 (2016)

    Article  CAS  Google Scholar 

  13. Q. Zhao, Z. Long, J. Kong, T. Liu, D. Sun-Waterhouse, M. Zhao, Food Hydrocoll. 43, 137–145 (2015)

    Article  Google Scholar 

  14. L. Liu, Q. Zhao, T. Liu, Z. Long, J. Kong, M. Zhao, Food Hydrocoll. 27(2), 339–346 (2012)

    Article  CAS  Google Scholar 

  15. S.M. Loveday, A. Ye, S.G. Anema, H. Singh, Food Res. Int. 54(1), 111–117 (2013)

    Article  CAS  Google Scholar 

  16. C. Schmitt, S.L. Turgeon, Adv. Colloid Interf. Sci. 167(1), 63–70 (2011)

    Article  CAS  Google Scholar 

  17. W. Xiong, C. Ren, M. Tian, X. Yang, J. Li, B. Li, Food Hydrocoll. 73, 41–50 (2017)

    Article  CAS  Google Scholar 

  18. S.M. Razi, A. Motamedzadegan, L. Matia-Merino, S.-A. Shahidi, A. Rashidinejad, Food Hydrocoll. 94, 399–410 (2019)

    Article  CAS  Google Scholar 

  19. A. Ye, International Journal of Food Science & Technology 43(3), 406–415 (2008)

    Article  CAS  Google Scholar 

  20. R.N. Tharanathan, Y.V. Anjaneyalu, Aust. J. Chem. 28(6), 1345–1350 (1975)

    Article  CAS  Google Scholar 

  21. S. Mirarab Razi, A. Motamedzadegan, S. Shahidi and A. Rashidinejad, Food Nutr J: FDNJ-192. , DOI 10, 2575–7091. (2018b)

  22. A. Rafe, S.M.A. Razavi, R. Farhoosh, Food Hydrocoll. 30(1), 134–142 (2013)

    Article  CAS  Google Scholar 

  23. R. Farahmandfar, S. Naji-Tabasi, Int. J. Biol. Macromol. 149, 101–107 (2020)

    Article  CAS  Google Scholar 

  24. M. Hatami, M. Nejatian, M.A. Mohammadifar, H. Pourmand, Carbohydr. Polym. 101, 1068–1073 (2014)

    Article  CAS  Google Scholar 

  25. J. Li, Y. Wu, Y. Ma, N. Lu, J.M. Regenstein, P. Zhou, Food Funct. 8(8), 2897–2904 (2017)

    Article  CAS  Google Scholar 

  26. D.N. López, M. Galante, E.M. Alvarez, P.H. Risso, V. Boeris, Carbohydr. Polym. 173, 1–6 (2017)

    Article  Google Scholar 

  27. M. Khemakhem, H. Attia, M.A. Ayadi, Food Hydrocoll. 87, 11–19 (2019)

    Article  CAS  Google Scholar 

  28. F. Weinbreck, R. de Vries, P. Schrooyen, C.G. de Kruif, Biomacromolecules 4(2), 293–303 (2003)

    Article  CAS  Google Scholar 

  29. C.G. de Kruif, R. Tuinier, Food Hydrocoll. 15(4), 555–563 (2001)

    Article  Google Scholar 

  30. S.H. Hosseini-Parvar, L. Matia-Merino, K.K.T. Goh, S.M.A. Razavi, S.A. Mortazavi, J. Food Eng. 101(3), 236–243 (2010)

    Article  Google Scholar 

  31. S. Sharabiani, S. Razavi, K. Behzad and M. Tehrani, Iranian Food Science & Technology Research Journal 6 (1), 27–36. (2010)

  32. M. Bourne, Food texture and viscosity: concept and measurement. . (Elsevier., 2002)

  33. L. van den Berg, Y. Rosenberg, M.A.J.S. van Boekel, M. Rosenberg, F. van de Velde, Food Hydrocoll. 23(5), 1288–1298 (2009)

    Article  Google Scholar 

  34. A. Pitkowski, D. Durand, T. Nicolai, Colloid and Interface Science 326, 96–102 (2008)

    Article  CAS  Google Scholar 

  35. A. Rafe, S.M.A. Razavi, International Journal of Food Science & Technology 48(9), 1924–1931 (2013)

    Article  CAS  Google Scholar 

  36. F. Javidi, S. M. Razavi, F. Behrouzian and A. Alghooneh, Food Hydrocolloids 52, 625–633. (2016)

  37. S. M. A. Razavi and S. Naji-Tabasi, in Advances in Food Rheology and Its Applications, edited by J. Ahmed, P. Ptaszek and S. Basu (Woodhead Publishing, 2017), pp. 405–435

  38. C. Schmitt, C. Sanchez, S. Desobry-Banon and J. Hardy, Critical Reviews in Food Science and Nutrition 38 (8), 689–753. (1998)

  39. A. Rafe, S.M.A. Razavi, S. Khan, Food Res. Int. 49(1), 32–38 (2012)

    Article  CAS  Google Scholar 

  40. C. J. Souza and E. E. Garcia-Rojas, Food Hydrocolloids 66, 268–275. (2017)

  41. M. Tunick, C. Onwulata and P. Cooke, Abstracts of papers of the american chemical society. amer chemical soc 1155 16th st, nw, washington, dc 20036 USA. (2012)

  42. I. Heertje, Food Structure 1 (1), 3–23. (2014)

  43. S. Banerjee and S. Bhattacharya, Critical Reviews in Food Science and Nutrition 52 (4), 334–346. (2012)

  44. S. M. Razi, A. Motamedzadegan, S.-A. Shahidi and A. Rashidinejad, Int. J. Chem. Eng. (2019)

  45. S. M. Razi, A. Motamedzadegan, S.-A. Shahidi and A. Rashidinejad, Rheologica Acta, 1–15 (2020)

Download references

Acknowledgements

This work was supported by Tabarestan Technology Incubator (TTI), Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Motamedzadegan or Ali Rashidinejad.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarabi-Aghdam, V., Hosseini-Parvar, S.H., Motamedzadegan, A. et al. Characterization of Aqueous Dispersions and Gels Made of Sodium Caseinate and Basil Seed Gum: Phase Behavior, Rheology, and Microstructure. Food Biophysics 15, 495–508 (2020). https://doi.org/10.1007/s11483-020-09644-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-020-09644-w

Keywords

Navigation