Skip to main content
Log in

The influence of mycorrhization on the growth of Zea mays L. and the sclerification of foliar tissues susceptible to chewing insect attacks

  • Biochemistry & Physiology - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

The interrelationships between arbuscular mycorrhizal fungi (AMF) and plants have been the subject of numerous studies; however, whether these mutualistic associations are capable of producing structural defenses in plants for pest control remains to be determined. The present study evaluated the influence of AMF on the sclerification of foliar tissues of corn and related it to insect attack. Corn plants were grown in 5.5-L pots containing soil/sand (sterile, fertilized, pH corrected) in a greenhouse. Mycorrhized plants received propagules of native AMF; non-mycorrhized plants received soil filtrate of AMF-free soil. Some of the plants of both treatments were collected at 40 days post-emergence, while others were collected at 50 days and 60 days. Height and dry mass of the aerial part and dry mass of radicular part were evaluated. The median region of leaves of the fourth (basal) and seventh (cartridge) leaf nodes was transversally sectioned, and the sections stained, mounted in semi-permanent medium and analyzed under a microscope to measure variables related to tissue organization and sclerification. Mycorrhized plants had greater height and aerial-part dry mass. Mycorrhization influenced nine of the 15 anatomical variables analyzed with increased lignified tissue in at least one of the growth stages. It can be concluded that colonization of corn roots by AMF promotes sclerification of leaf tissues and, thus, may interfere indirectly with the plant–pest relationship by altering the quality of phytomass available for insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aoyama EM, Labinas AM (2012) Características estruturais das plantas contra a Herbivoria por insetos. Encicl Biosf 8:365–386

    Google Scholar 

  • Barriga JCH, Visbal MP, Acero JG (2011) Relación entre los caracteres de las micorrizas arbusculares nativas con las propiedades físicoquímicas del suelo y bromatología del pasto estrella en ganadería de carne. UDO Ag 11:134–141

    Google Scholar 

  • Bennett AE, Grussu D, Kam J, Caul S, Halpin C (2014) Plant lignin content altered by soil microbial community. New Phytol 206:166–174

    Article  Google Scholar 

  • Broch DL, Ranno SK (2012) Fertilidade do solo, adubação e nutrição da cultura do milho safrinha. In: Tecnologia e produção: milho safrinha. Fundação MS, Maracaju, pp. 3–28

  • Campos DTS, Andrade JAC, Cassiolato AMR (2010) Crescimento e micorrização de genótipos de milho em casa de vegetação. Bragantia 69:555–562

    Article  Google Scholar 

  • Campos AAB, Scotton JC, Pinto DFP, Picareli B, Longaresi RH, Homma SK (2015) Fungos micorrízicos arbusculares em dois sistemas de cultivo de milho. RBAS 5:137–142

    Article  Google Scholar 

  • Conab—Companhia Nacional de Abastecimento (2019) Acompanhamento da safra brasileira de grãos Safra 2018/2019—Décimo segundo levantamento. Conab, Brasília. https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos

  • Cruz I, Valicente FH, Viana PA, Mendes SM (2013) Risco potencial das pragas de milho e de sorgo no Brasil. Embrapa Milho e Sorgo, Sete Lagoas

    Google Scholar 

  • De Lange ES, Balmer D, Mauch-Mani B, Turlings TCJ (2014) Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytol 204:329–341

    Article  Google Scholar 

  • De Moraes RFO, Eduardo WI, Duarte AP, Boiça Júnior AL (2018) Resistência de cultivares de milho convencional a lagarta do cartucho. Agrarian. https://doi.org/10.30612/agrarian.v11i39.5290

    Article  Google Scholar 

  • Dehne HW, Schoenbeck F (1979) The influence of endotrophic mycorrhiza on plant diseases. II. Phenol metabolism and lignification. Phytopathol Z 95:210–216

    Article  CAS  Google Scholar 

  • Do Nascimento AA, De Menezes LFT, Nascimento MT (2017) Water content, fibres, and herbivory in leaves of two distinct and adjacent tree communities of the Brazilian Atlantic Forest. Hoehnea 44:103–110

    Article  Google Scholar 

  • Dos Santos HG, Jacomine PKT, Dos Anjos LHC, De Oliveira VA, Lumbreras JF, Coelho MR, De Almeida JÁ, Araújo Filho JC, De Oliveira JB, Cunha TJF (2018) Sistema Brasileiro de Classificação de Solos. Embrapa, Brasília

    Google Scholar 

  • Evert RF (2007) Esau’s plant anatomy: meristems, cells and tissues of the plant body, their structure, function and development. Wiley, Hoboken

    Google Scholar 

  • Farnia A, Khodabandehloo S (2015) Changes in yield and its components of maize (Zea mays L.) to foliar application of zinc nutrient and mycorrhiza under water stress condition. Int J Life Sci 9:75–80

    Article  Google Scholar 

  • Fürstenberg-Hägg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14:10242–10297

    Article  Google Scholar 

  • Gallo D, Nakano O, Carvalho RPL, Baptista GC, Parra JRP, Alves SB, Vendramim JD, Marchini LC, Lopes JRS, Omoto C (2002) Entomologia agrícola. Fealq, Piracicaba

    Google Scholar 

  • Global Biodiversity Information Facility (2019) Spodoptera frugiperda Smith & Abbot, 1797. In: GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei. Accessed via GBIF.org on 2019-11-28

  • Johansen DA (1940) Plant microtechnique. Mcgraw-Hill Book, Nova York

    Google Scholar 

  • Kaiser E (1880) Verfahren zur Herstellung einer tadellosen glycerin-gelatine. Bot Zentralb 180:25–26

    Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    Article  Google Scholar 

  • Kraus JE, Sousa HC, Rezende MH, Castrod NM, Vecchi C, Luque R (1998) Astra blue and basic fuchsin double staining of plant materials. Biotech Histochem 73:235–243

    Article  CAS  Google Scholar 

  • Lee B-R, Muneer S, Jung W-J, Avice J-C, Ourry A, Kim T-H (2012) Mycorrhizal colonization alleviates drought-induced oxidative damage and lignification in the leaves of drought-stressed perennial ryegrass (Lolium perenne). Physiol Plant 145:440–449

    Article  CAS  Google Scholar 

  • Marquis RJ (2012) Uma abordagem geral das defesas das plantas contra ação dos herbívoros. In: Del-Claro K, Torezan-Silingardi HMT (eds) Ecologia das interações planta-animais: uma abordagem ecológico-evolutiva. Technical Books, Rio de Janeiro, pp 55–66

    Google Scholar 

  • Miranda JCC, Miranda LN (2004) Dependência micorrízica de diferentes culturas anuais, adubos verdes e pastagens em solos de cerrado. Embrapa Cerrados, Planaltina

    Google Scholar 

  • Panizzi AR, Parra JRP (2009) Biologia e nutrição de insetos: base para o manejo integrado de pragas. Embrapa Informação Tecnológica, Brasília

    Google Scholar 

  • Pionner Sementes (2019) Híbridos de milho: 30F53. Publicação física na web. http://www.pioneersementes.com.br/milho/central-de-produtos/produtos/30f53

  • Reis RJA, Campos AS, Martins GSL, De Jesus EL, Bastiani MLR, Campos ANR (2012) Efeito de plantas de cobertura nas associações do milho (Zea mays. L.) com fungos benéficos do solo. RBAS 2:75–80

    Google Scholar 

  • Saldajeno G, Chandanie WA, Kubota M, Hyakumachi M (2008) Effects of interactions of arbuscular mycorrhizal fungi and beneficial saprophytic mycoflora on plant growth and disease protection. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, London, pp 211–226

    Chapter  Google Scholar 

  • Santos JKS, Santana MDF, Lara TS (2018) Responsividade de plantas de milho à inoculação com fungos micorrízicos arbusculares da rizosfera de ipê amarelo. RAGROS 10:253–264

    Google Scholar 

  • Saxena D, Stotzky G (2001) BT corn has a higher lignin content than NON-BT corn. Am J Bot 88:1704–1706

    Article  CAS  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  Google Scholar 

  • Shrestha G, Vaidya GS, Rajbhandari BP (2009) Effects of arbuscular mycorrhiza in the productivity of maize and finger millet relay cropping system. Nepal J Sci Technol 10:51–55

    Article  Google Scholar 

  • Silveira RLVA, Higashi EM (2003) Aspectos nutricionais envolvidos na ocorrência de doenças com ênfase para o eucalipto. Circular Técnica IRF. Publicação física na web https://www.ipef.br/publicacoes/ctecnica/nr200.pdf

  • Siqueira JO, Lambais MR, Stürmer SL (2002) fungos micorrízicos arbusculares: características, associação simbiótica e aplicação na agricultura. Biotecnol. Cienc Desenvolv 25:12–21

    Google Scholar 

  • Tallamy DW, Wood TK (1986) Convergence patterns in subsocial insects. Ann Rev Entomol 31:369–390

    Article  Google Scholar 

  • Tsuzukibashi D, Costa JPR, Moro FV, Ruggieri AC, Malheiros EB (2016) Anatomia quantitativa, digestibilidade in vitro e composição química de cultivares de Brachiaria brizantha. Rev Cienc Agrar 39:46–53

    Google Scholar 

  • Valicente FH (2015) Manejo integrado de pragas na cultura do milho. Circular Técnica 208. Embrapa Milho e Sorgo, Sete Lagoas

  • Velásquez PAT, Berchielli TT, Reis RA, Rivera AR, Dian PHM, Teixeira IAMA (2010) Composição química, fracionamento de carboidratos e proteínas, e digestibilidade in vitro de forrageiras tropicais em diferentes idades de corte. R Bras Zootec 39:206–1213

    Article  Google Scholar 

  • Zancanaro PO, Buchwitz ED, Boiça Junior AL, Moro JR (2012) Avaliação de tecnologias de refúgio no cultivo de milho transgênico. Pesq Agropec Bras 47:886–891

    Article  Google Scholar 

  • Zhao R, Guo W, Bi N, Guo J, Wang L, Zhao J, Zhang J (2015) Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl Soil Ecol 88:41–49

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Western Paraná State University (Unioeste) for providing their facilities, equipment and technical support for this study, in particular Dr. Luis Francisco Angeli Alves (Agricultural Biotechnology Laboratory), and Biologist Tainã de Souza, for help in making the anatomical figures of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the initial study. Planting, cultivation, plant collection, histological slide preparation and data collection were performed by SD, and analyzed together by SD and SMS. The collected data were statistically analyzed by RC, which produced the first draft of the manuscript. Subsequently, all the authors helped in the construction of the versions that consolidated the final manuscript.

Corresponding author

Correspondence to Silvana Damin.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damin, S., Carrenho, R. & Martins, S. The influence of mycorrhization on the growth of Zea mays L. and the sclerification of foliar tissues susceptible to chewing insect attacks. Braz. J. Bot 43, 493–502 (2020). https://doi.org/10.1007/s40415-020-00621-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-020-00621-8

Keywords

Navigation