Skip to main content
Log in

Spliceosomal Introns: Features, Functions, and Evolution

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Spliceosomal introns, which have been found in most eukaryotic genes, are non-coding sequences excised from pre-mRNAs by a special complex called spliceosome during mRNA splicing. Introns occur in both protein- and RNA-coding genes and can be found in coding and untranslated gene regions. Because intron sequences vary greatly due to a high rate of polymorphism, the functions of intron had been for a long time associated only with alternative splicing, while intron evolution had been viewed not as an evolution of an individual genomic element, but rather considered within a framework of the evolution of the gene intron-exon structure. Here, we review the theories of intron origin, evolutionary events in the exon-intron structure, such as intron gain, loss, and sliding, intron functions known to date, and mechanisms by which changes in the intron features (length and phase) can affect the regulation of gene-mediated processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EIS:

exon-intron structure

LECA:

last eukaryotic common ancestor

REFERENCES

  1. Chow, L. T., Gelinas, R. E., Broker, T. R., and Roberts, R. J. (1977) An amazing sequence arrangement at the 5′-ends of adenovirus 2 messenger RNA, Cell, 12, 1-8, doi: https://doi.org/10.1016/0092-8674(77)90180-5 .

    Article  CAS  PubMed  Google Scholar 

  2. Berget, S. M., Moore, C., and Sharp, P. A. (1977) Spliced segments at the 5′-terminus of adenovirus 2 late mRNA, Proc. Natl. Acad. Sci. USA, 74, 3171-3175.

    Article  CAS  Google Scholar 

  3. Gilbert, W. (1978) Why genes in pieces, Nature, 271, 501, doi: https://doi.org/10.1038/271501a0 .

    Article  CAS  PubMed  Google Scholar 

  4. Rogozin, I. B., Carmel, L., Csuros, M., and Koonin, E. V. (2012) Origin and evolution of spliceosomal introns, Biol. Direct., 7, 11, doi: https://doi.org/10.1186/1745-6150-7-11 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luo, M. J., and Reed, R. (1999) Splicing is required for rapid and efficient mRNA export in metazoans, Proc. Natl. Acad. Sci. USA, 96, 14937-14942.

    Article  CAS  Google Scholar 

  6. Patel, A. A., and Steitz, J. A. (2003) Splicing double: insights from the second spliceosome, Nat. Rev. Mol. Cell Biol., 4, 960-970, doi: https://doi.org/10.1038/nrm1259 .

    Article  CAS  PubMed  Google Scholar 

  7. Patel, A. A., McCarthy, M., and Steitz, J. A. (2002) The splicing of U12-type introns can be a rate-limiting step in gene expression, EMBO J., 21, 3804-3815, doi: https://doi.org/10.1093/emboj/cdf297 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chorev, M., and Carmel, L. (2012) The function of introns, Front. Genet., 3, 1-15, doi: https://doi.org/10.3389/fgene.2012.00055 .

    Article  Google Scholar 

  9. Fedorova, L., and Fedorov, A. (2003) Introns in gene evolution, Genetica, 118, 123-131.

    Article  CAS  Google Scholar 

  10. Parenteau, J., Durand, M., Morin, G., Gagnon, J., Lucier, J.-F., Wellinger, R. J., Chabot, B., and Abou Elela, S. (2011) Introns within ribosomal protein genes regulate the production and function of yeast ribosomes, Cell, 147, 320-331, doi: https://doi.org/10.1016/j.cell.2011.08.044 .

    Article  CAS  PubMed  Google Scholar 

  11. Cannone, J. J., Subramanian, S., Schnare, M. N., Collett, J. R., D’Souza, L. M., Du, Y., Feng, B., Lin, N., Madabusi, L. V., Müller, K. M., Pande, N., Shang, Z., Yu, N., and Gutell, R. R. (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs, BMC Bioinformatics, 3, 2.

    Article  Google Scholar 

  12. Lane, C. E., van den Heuvel, K., Kozera, C., Curtis, B. A., Parsons, B. J., Bowman, S., Archibald, J. M. (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function, Proc. Natl. Acad. Sci. USA, 104, 19908-19913, doi: https://doi.org/10.1073/pnas.0707419104 .

    Article  PubMed  Google Scholar 

  13. Rogers, J. H. (1989) How were introns inserted into nuclear genes? Trends Genet., 5, 213-216.

    Article  CAS  Google Scholar 

  14. Cavalier-Smith, T. (1991) Intron phylogeny: a new hypothesis, Trends Genet., 7, 145-148.

    Article  CAS  Google Scholar 

  15. Csuros, M., Rogozin, I. B., and Koonin, E. V. (2011) A detailed history of intron-rich eukaryotic ancestors inferred from a global survey of 100 complete genomes, PLoS Comput. Biol., 7, 1-9, doi: https://doi.org/10.1371/journal.pcbi.1002150 .

    Article  CAS  Google Scholar 

  16. Sakurai, A., Fujimori, S., Kochiwa, H., Kitamura-Abe, S., Washio, T., Saito, R., Carninci, P., Hayashizaki, Y., and Tomita, M. (2002) On biased distribution of introns in various eukaryotes, Gene, 300, 89-95.

    Article  CAS  Google Scholar 

  17. Ponjavic, J., Ponting, C. P., and Lunter, G. (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs, Genome Res., 17, 556-565, doi: https://doi.org/10.1101/gr.6036807 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parada, G. E., Munita, R., Cerda, C. A., and Gysling, K. (2014) A comprehensive survey of non-canonical splice sites in the human transcriptome, Nucleic Acids Res., 42, 16.

    Article  Google Scholar 

  19. Pucker, B., and Brockington, S. F. (2018) Genome-wide analyses supported by RNA-Seq reveal non-canonical splice sites in plant genomes, BMC Genomics, 19, 980, doi: https://doi.org/10.1186/s12864-018-5360-z .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alioto, T. S. (2007) U12DB: a database of orthologous U12-type spliceosomal introns, Nucleic Acids Res., 35, D110-D115, doi: https://doi.org/10.1093/nar/gkl796 .

    Article  CAS  PubMed  Google Scholar 

  21. Schellenberg, M. J., Ritchie, D. B., and MacMillan, A. M. (2008) Pre-mRNA splicing: a complex picture in higher definition, Trends Biochem. Sci., 33, 243-246, doi: https://doi.org/10.1016/j.tibs.2008.04.004 .

    Article  CAS  PubMed  Google Scholar 

  22. Sverdlov, A. V., Rogozin, I. B., Babenko, V. N., and Koonin, E. V. (2003) Evidence of splice signal migration from exon to intron during intron evolution, Curr. Biol., 13, 2170-2174, doi: https://doi.org/10.1016/j.cub.2003.12.003 .

    Article  CAS  PubMed  Google Scholar 

  23. Kim, E., Magen, A., and Ast, G. (2007) Different levels of alternative splicing among eukaryotes, Nucleic Acids Res., 35, 125-131, doi: https://doi.org/10.1093/nar/gkl924 .

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen, H. D., Yoshihama, M., and Kenmochi, N. (2006) Phase distribution of spliceosomal introns: implications for intron origin, BMC Evol. Biol., 6, 69, doi: https://doi.org/10.1186/1471-2148-6-69 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koonin, E. V. (2009) Intron-dominated genomes of early ancestors of eukaryotes, J. Hered., 100, 618-623, doi: https://doi.org/10.1093/jhered/esp056 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Charlesworth, B. (2009) Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation, Nat. Rev. Genet., 10, 195-205, doi: https://doi.org/10.1038/nrg2526 .

    Article  CAS  PubMed  Google Scholar 

  27. Fedorov, A., Merican, A. F., and Gilbert, W. (2002) Large-scale comparison of intron positions among animal, plant, and fungal genes, Proc. Natl. Acad. Sci. USA, 99, 16128-16133, doi: https://doi.org/10.1073/pnas.242624899 .

    Article  CAS  PubMed  Google Scholar 

  28. Carmel, L., Rogozin, I. B., Wolf, Y. I., and Koonin, E. V. (2007) Patterns of intron gain and conservation in eukaryotic genes, BMC Evol. Biol., 7, 192, doi: https://doi.org/10.1186/1471-2148-7-192 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roy, S. W. (2016) How common is parallel intron gain? rapid evolution versus independent creation in recently created introns in Daphnia, Mol. Biol. Evol., 33, 1902-1906, doi: https://doi.org/10.1093/molbev/msw091 .

    Article  CAS  PubMed  Google Scholar 

  30. Mourier, T., and Jeffares, D. C. (2003) Eukaryotic intron loss, Science, 300, 1393, doi: https://doi.org/10.1126/science.1080559 .

    Article  CAS  PubMed  Google Scholar 

  31. Hong, X., Scofield, D. G., and Lynch, M. (2016) Intron size, abundance, and distribution within untranslated regions of genes, Mol. Biol. Evol., 23, 2392-2404, doi: https://doi.org/10.1093/molbev/msl111 .

    Article  CAS  Google Scholar 

  32. Sverdlov, A. V., Csuros, M., Rogozin, I. B., and Koonin, E. V. (2007) A glimpse of a putative pre-intron phase of eukaryotic evolution, Trends Genet., 23, 105-108, doi: https://doi.org/10.1016/j.tig.2007.01.001 .

    Article  CAS  PubMed  Google Scholar 

  33. Derr, L. K., Strathern, J. N., and Garfinkel, D. J. (1991) RNA-mediated recombination in S. cerevisiae, Cell, 67, 355-364, doi: https://doi.org/10.1016/0092-8674(91)90187-4 .

    Article  CAS  PubMed  Google Scholar 

  34. Lee, S., and Stevens, S. W. (2016) Spliceosomal intronogenesis, Proc. Natl. Acad. Sci. USA, 113, 6514-6519, doi: https://doi.org/10.1073/pnas.1605113113 .

    Article  CAS  PubMed  Google Scholar 

  35. Sverdlov, A. V., Babenko, V. N., Rogozin, I. B., and Koonin, E. V. (2004) Preferential loss and gain of introns in 3′ portions of genes suggests a reverse-transcription mechanism of intron insertion, Gene, 338, 85-91, doi: https://doi.org/10.1016/j.gene.2004.05.027 .

    Article  CAS  PubMed  Google Scholar 

  36. Tarrío, R., Ayala, F. J., and Rodríguez-Trelles, F. (2008) Alternative splicing: a missing piece in the puzzle of intron gain, Proc. Natl. Acad. Sci. USA, 105, 7223-7228, doi: https://doi.org/10.1073/pnas.0802941105 .

    Article  PubMed  Google Scholar 

  37. Rigau, M., Juan, D., Valencia, A., and Rico, D. (2019) Intronic CNVs and gene expression variation in human populations, PLoS Genet., 15, e1007902, doi: https://doi.org/10.1371/journal.pgen.1007902 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yenerall, P., Krupa, B., and Zhou, L. (2011) Mechanisms of intron gain and loss in Drosophila, BMC Evol. Biol., 11, 364, doi: https://doi.org/10.1186/1471-2148-11-364 .

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lehmann, J., Eisenhardt, C., Stadler, P. F., and Krauss, V. (2010) Some novel intron positions in conserved Drosophila genes are caused by intron sliding or tandem duplication, BMC Evol. Biol., 10, 156, doi: https://doi.org/10.1186/1471-2148-10-156 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Krauss, V., Pecyna, M., Kurz, K., and Sass, H. (2005) Phylogenetic mapping of intron positions: a case study of translation initiation factor eIF2γ, Mol. Biol. Evol., 22, 74-84, doi: https://doi.org/10.1093/molbev/msh255 .

    Article  CAS  PubMed  Google Scholar 

  41. Poverennaya, I. V., Gorev, D. D., Astakhova, T. V., Tsitovich, I. I., Yakovlev, V. V., and Roytberg, M. A. (2017) Intron sliding and length variability of genes enriched of phase 1 long introns, Mat. Biolog. Bioinform., 12, 302-316, doi: https://doi.org/10.17537/2017.12.302 .

    Article  Google Scholar 

  42. De Souza, S. J., Long, M., Klein, R. J., Roy, S., Lin, S., and Gilbert, W. (1998) Toward a resolution of the introns early/late debate: only phase zero introns are correlated with the structure of ancient proteins, Proc. Natl. Acad. Sci. USA, 95, 5094-5099.

    Article  CAS  Google Scholar 

  43. Stoltzfus, A., Logsdon, J. M., Palmer, J. D., and Doolittle, W. F. (1997) Intron “sliding” and the diversity of intron positions, Proc. Natl. Acad. Sci. USA, 94, 10739-10744.

    Article  CAS  Google Scholar 

  44. Bocco, S. S., and Csűrös, M. (2016) Splice sites seldom slide: intron evolution in oomycetes, Genome Biol. Evol., 8, 2340-2350, doi: https://doi.org/10.1093/gbe/evw157 .

    Article  Google Scholar 

  45. Rogozin, I. B., Lyons-Weiler, J., and Koonin, E. V. (2000) Intron sliding in conserved gene families, Trends Genet., 16, 430-432, doi: https://doi.org/10.1016/s0168-9525(00)02096-5 .

    Article  CAS  PubMed  Google Scholar 

  46. Fekete, E., Flipphi, M., Ág, N., Kavalecz, N., Cerqueira, G., Scazzocchio, C., and Karaffa, L. (2017) A mechanism for a single nucleotide intron shift, Nucleic Acids Res., 45, 9085-9092, doi: https://doi.org/10.1093/nar/gkx520 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roesner, A., Fuchs, C., Hankeln, T., and Burmester, T. (2005) A globin gene of ancient evolutionary origin in lower vertebrates: evidence for two distinct globin families in animals, Mol. Biol. Evol., 22, 12-20, doi: https://doi.org/10.1093/molbev/msh258 .

    Article  CAS  PubMed  Google Scholar 

  48. Long, M., de Souza, S. J., Rosenberg, C., and Gilbert, W. (1998) Relationship between “proto-splice sites” and intron phases: evidence from dicodon analysis, Proc. Natl. Acad. Sci. USA, 95, 219-223.

    Article  CAS  Google Scholar 

  49. Fedorov, A., Suboch, G., Bujakov, M., and Fedorova, L. (1992) Analysis of nonuniformity in intron phase distribution, Nucleic Acids Res., 20, 2553-2557.

    Article  CAS  Google Scholar 

  50. Endo, T., Fedorov, A., de Souza, S. J., and Gilbert, W. (2002) Do introns favor or avoid regions of amino acid conservation? Mol. Biol. Evol., 19, 521-252, doi: https://doi.org/10.1093/oxfordjournals.molbev.a004107 .

    Article  CAS  PubMed  Google Scholar 

  51. Gilbert, W., de Souza, S. J., and Long, M. (1997) Origin of genes, Proc. Natl. Acad. Sci. USA, 94, 7698-7703.

    Article  CAS  Google Scholar 

  52. Logsdon, J. M. (1998) The recent origins of spliceosomal introns revisited, Curr. Opin. Genet. Dev., 8, 637-648.

    Article  CAS  Google Scholar 

  53. Long, M., and Deutsch, M. (1999) Association of intron phases with conservation at splice site sequences and evolution of spliceosomal introns, Mol. Biol. Evol., 16, 1528-1534.

    Article  CAS  Google Scholar 

  54. Ruvinsky, A., Eskesen, S. T., Eskesen, F. N., and Hurst, L. D. (2005) Can codon usage bias explain intron phase distributions and exon symmetry? J. Mol. Evol., 60, 99-104, doi: https://doi.org/10.1007/s00239-004-0032-9 .

    Article  CAS  PubMed  Google Scholar 

  55. Astakhova, T. V., Roytberg, M. A., Tsitovich, I. I., and Yakovlev, V. V. (2014) Regularities related to introns lengths distribution, Mat. Biolog. Bioinform., 9, 482-490.

    Article  Google Scholar 

  56. Ruvinsky, A., and Ward, W. (2008) Intron framing exonic nucleotides: a compromise between protein coding and splicing constraints, Open Evol. J., 2, 7-12, doi: https://doi.org/10.2174/1874404400802010007 .

    Article  CAS  Google Scholar 

  57. Halligan, D. L., and Keightley, P. D. (2006) Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison, Genome Res., 16, 875-884, doi: https://doi.org/10.1101/gr.5022906 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bradnam, K. R., and Korf, I. (2008) Longer first introns are a general property of eukaryotic gene structure, PLoS One, 3, e3093, doi: https://doi.org/10.1371/journal.pone.0003093 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Farlow, A., Dolezal, M., Hua, L., and Schlötterer, C. (2012) The genomic signature of splicing-coupled selection differs between long and short introns, Mol. Biol. Evol., 29, 21-24, doi: https://doi.org/10.1093/molbev/msr201 .

    Article  CAS  PubMed  Google Scholar 

  60. Shepard, S., Mc Creary, M., and Fedorov, A. (2009) The peculiarities of large intron splicing in animals, PLoS One, 4, e7853, doi: https://doi.org/10.1371/journal.pone.0007853 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sibley, C. R., Emmett, W., Blazquez, L., Faro, A., Haberman, N., Briese, M., Trabzuni, D., Ryten, M., Weale, M. E., Hardy, J., Modic, M., Curk, T., Wilson,S. W., Plagnol, V., and Ule, J. (2015) Recursive splicing in long vertebrate genes, Nature, 521, 371-375, doi: https://doi.org/10.1038/nature14466 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vinogradov, A. E. (2006) “Genome design” model: evidence from conserved intronic sequence in human-mouse comparison, Genome Res., 16, 347-354, doi: https://doi.org/10.1101/gr.4318206 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Seoighe, C., and Korir, P. K. (2011) Evidence for intron length conservation in a set of mammalian genes associated with embryonic development, BMC Bioinformatics, 12, Suppl. 9, S16, doi: https://doi.org/10.1186/1471-2105-12-S9-S16 .

    Article  Google Scholar 

  64. Shchepetkova, I. L., and Gelfand, M. S. (1997) Statistical characteristics of splicing sites in vertebrates and invertebrates, Biophysics (Moscow), 42, 82-89.

    CAS  Google Scholar 

  65. Marais, G., Nouvellet, P., Keightley, P. D., and Charlesworth, B. (2005) Intron size and exon evolution in Drosophila, Genetics, 170, 481-485, doi: https://doi.org/10.1534/genetics.104.037333 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu, X., and Hurst, L. D. (2015) Why selection might be stronger when populations are small: intron size and density predict within and between-species usage of exonic splice associated cis-motifs, Mol. Biol. Evol., 32, 1847-1861, doi: https://doi.org/10.1093/molbev/msv069 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Haddrill, P. R., Charlesworth, B., Halligan, D. L., and Andolfatto, P. (2005) Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content, Genome Biol., 6, R67, doi: https://doi.org/10.1186/gb-2005-6-8-r67 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Keane, P. A., and Seoighe, C. (2016) Intron length coevolution across mammalian genomes, Mol. Biol. Evol., 33, 2682-2691, doi: https://doi.org/10.1093/molbev/msw151 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pozzoli, U., Menozzi, G., Comi, G. P., Cagliani, R., Bresolin, N., and Sironi, M. (2007) Intron size in mammals: complexity comes to terms with economy, Trends Genet., 23, 20-24, doi: https://doi.org/10.1016/j.tig.2006.10.003 .

    Article  CAS  PubMed  Google Scholar 

  70. Castillo-Davis, C. I., Mekhedov, S. L., Hartl, D. L., Koonin, E. V., and Kondrashov, F. A. (2002) Selection for short introns in highly expressed genes, Nat. Genet., 31, 415-418, doi: https://doi.org/10.1038/ng940 .

    Article  CAS  PubMed  Google Scholar 

  71. Rao, Y. S., Wang, Z. F., Chai, X. W., Wu, G. Z., Zhou, M., Nie, Q. H., and Zhang, X. Q. (2010) Selection for the compactness of highly expressed genes in Gallus gallus, Biol. Direct, 5, 35, doi: https://doi.org/10.1186/1745-6150-5-35 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, Q., and Edwards, S. V. (2012) The evolution of intron size in amniotes: a role for powered flight? Genome Biol. Evol., 4, 1033-1043, doi: https://doi.org/10.1093/gbe/evs070 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Duret, L., Mouchiroud, D., and Gautier, C. (1995) Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores, J. Mol. Evol., 40, 308-317, doi: https://doi.org/10.1007/bf00163235 .

    Article  CAS  PubMed  Google Scholar 

  74. Versteeg, R., van Schaik, B. D. C., van Batenburg, M. F., Roos, M., Monajemi, R., Caron, H., Bussemaker, H. J., and van Kampen, A. H. C. (2003) The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes, Genome Res., 13, 1998-2004, doi: https://doi.org/10.1101/gr.1649303 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chaurasia, A., Tarallo, A., Bernà, L., Yagi, M., Agnisola, C., and D’Onofrio, G. (2014) Length and GC content variability of introns among teleostean genomes in the light of the metabolic rate hypothesis, PLoS One, 9, e103889, doi: https://doi.org/10.1371/journal.pone.0103889 .

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhang, Q., Li, H., Zhao, X.-Q., Xue, H., Zheng, Y., Meng, H., Jia, Y., and Bo, S.-L. (2016) The evolution mechanism of intron length, Genomics, 108, 47-55, doi: https://doi.org/10.1016/j.ygeno.2016.07.004 .

    Article  CAS  PubMed  Google Scholar 

  77. Sathe, L., Bolinger, C., Mannan, M. A., Dever, T. E., and Dey, M. (2015) Evidence that base-pairing interaction between intron and mRNA leader sequences inhibits initiation of HAC1 mRNA translation in yeast, J. Biol. Chem., 290, 21821-21832, doi: https://doi.org/10.1074/jbc.M115.649335 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lynch, M. (2002) Intron evolution as a population-genetic process, Proc. Natl. Acad. Sci. USA, 99, 6118-6123, doi: https://doi.org/10.1073/pnas.092595699 .

    Article  CAS  PubMed  Google Scholar 

  79. Jo, B.-S., and Choi, S. S. (2015) Introns: the functional benefits of introns in genomes, Genomics Inform., 13, 112-118, doi: https://doi.org/10.5808/GI.2015.13.4.112 .

    Article  PubMed  PubMed Central  Google Scholar 

  80. Shaul, O. (2017) How introns enhance gene expression, Int. J. Biochem. Cell Biol., 91, 145-155, doi: https://doi.org/10.1016/j.biocel.2017.06.016 .

    Article  CAS  PubMed  Google Scholar 

  81. Lim, C. S., T Wardell, S. J., Kleffmann, T., and Brown, C. M. (2018) The exon-intron gene structure upstream of the initiation codon predicts translation efficiency, Nucleic Acids Res., 46, 4575-4591, doi: https://doi.org/10.1093/nar/gky282 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Parenteau, J., Maignon, L., Berthoumieux, M., Catala, M., Gagnon, V., and Abou Elela, S. (2019) Introns are mediators of cell response to starvation, Nature, 565, 612-617, doi: https://doi.org/10.1038/s41586-018-0859-7 .

    Article  CAS  PubMed  Google Scholar 

  83. Morgan, J. T., Fink, G. R., and Bartel, D. P. (2019) Excised linear introns regulate growth in yeast, Nature, 565, 606-611, doi: https://doi.org/10.1038/s41586-018-0828-1 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Majewski, J., and Ott, J. (2002) Distribution and characterization of regulatory elements in the human genome, Genome Res., 12, 1827-1836, doi: https://doi.org/10.1101/gr.606402 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Glazko, G. V., Koonin, E. V., Rogozin, I. B., and Shabalina, S. A. (2003) A significant fraction of conserved noncoding DNA in human and mouse consists of predicted matrix attachment regions, Trends Genet., 19, 119-124, doi: https://doi.org/10.1016/S0168-9525(03)00016-7 .

    Article  CAS  PubMed  Google Scholar 

  86. Tycowski, K. T., Shu, M. D., and Steitz, J. A. (1993) A small nucleolar RNA is processed from an intron of the human gene encoding ribosomal protein S3, Genes Dev., 7, 1176-1190.

    Article  CAS  Google Scholar 

  87. Rearick, D., Prakash, A., McSweeny, A., Shepard, S. S., Fedorova, L., and Fedorov, A. (2011) Critical association of ncRNA with introns, Nucleic Acids Res., 39, 2357-2366, doi: https://doi.org/10.1093/nar/gkq1080 .

    Article  CAS  PubMed  Google Scholar 

  88. Vakhrusheva, O. A., Bazykin, G. A., and Kondrashov, A. S. (2013) Genome-level analysis of selective constraint without apparent sequence conservation, Genome Biol. Evol., 5, 532-541, doi: https://doi.org/10.1093/gbe/evt023 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kumar, A. (2009) An overview of nested genes in eukaryotic genomes, Eukaryot. Cell, 8, 1321-1329, doi: https://doi.org/10.1128/EC.00143-09 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee, Y. C. G., and Chang, H.-H. (2013) The evolution and functional significance of nested gene structures in Drosophila melanogaster, Genome Biol. Evol., 5, 1978-1985, doi: https://doi.org/10.1093/gbe/evt149 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Assis, R., Kondrashov, A. S., Koonin, E. V., and Kondrashov, F. A. (2008) Nested genes and increasing organizational complexity of metazoan genomes, Trends Genet., 24, 475-478, doi: https://doi.org/10.1016/j.tig.2008.08.003 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project No. 18-34-00932).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Poverennaya.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poverennaya, I., Roytberg, M. Spliceosomal Introns: Features, Functions, and Evolution. Biochemistry Moscow 85, 725–734 (2020). https://doi.org/10.1134/S0006297920070019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920070019

Keywords

Navigation