Skip to main content

Advertisement

Log in

Ionospheric electron density characteristics over Africa from FORMOSAT-3/COSMIC radio occultation

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

With the widespread availability of ground and space-based global navigation satellite system (GNSS) observables, continuous and long-term explorations of ionospheric variations have been made possible worldwide or on regional basis with improved accuracy. The Formosa Satellite Mission#3/Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC) mission has a huge database of radio occultation (RO) soundings at regional and global scales with a high vertical resolution. Comparative studies between radio occultation, incoherent scatter radar and ionosonde observations indicate that COSMIC profiles agree well with ground measurements. The present paper investigates the ionospheric profiles over Africa using COSMIC data for the period from 2006 to 2017, representing almost a solar cycle year of study. The spatiotemporal variation of electron density confirms a hemispheric asymmetry among the equinoctial seasons and the solstice seasons during both low and moderate solar activity. Seasonal/winter anomaly manifestation is also clearly noticed in our observations with relatively high electron density during the winter solstice than the summer solstice. Moreover, the electron density over the region show apparent spatial and temporal variations identical to earlier ground-based ionospheric monitoring results over the African region. The outcomes from this study would strengthen the understanding of the ionospheric alterations and modelling activities in Africa, especially the areas with inadequate ground-based measuring instruments, hence, our results may complement the progress in global ionospheric modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Chauhan, V., Singh, O.P., Singh, B.: Diurnal and seasonal variation of GPS-TEC during a low solar activity period as observed at a low latitude station Agra. Indian J. Radio Space Phys. 40, 26–36 (2011)

    Google Scholar 

  • Christian, Z., Frederic, O., Fleury, R., Amory-Mazaudier, C., Patrick, L.: Seasonal TEC variability in West Africa equatorial anomaly region. Eur. J. Sci. Res. 77, 309–319 (2012)

    Google Scholar 

  • Dabbakuti, J.R.K.K., Mallika, Y., Venugopala Rao, M., Raghava Rao, K., Venkata Ratnam, D.: Modeling of GPS-TEC using QR-decomposition over the low latitude sector during disturbed geomagnetic conditions. Adv. Space Res. 64, 2088–2103 (2019). https://doi.org/10.1016/j.asr.2019.08.020

    Article  ADS  Google Scholar 

  • Fytterer, T., Arras, C., Hoffmann, P., Jacobi, C.: Global distribution of the migrating terdiurnal tide seen in sporadic E occurrence frequencies obtained from GPS radio occultations. Earth Planets Sp. 66–79 (2014). https://doi.org/10.1186/1880-5981-66-79

  • Gobiet, A., Kirchengast, G.: Advancements of Global Navigation Satellite System radio occultation retrieval in the upper stratosphere for optimal climate monitoring utility. J. Geophys. Res. 109, 1–11 (2004). https://doi.org/10.1029/2004jd005117

    Article  Google Scholar 

  • Gulyaeva, T.L.: Variations of the half-width of the topside ionosphere according to the observations by space ionosondes ISIS 1, ISIS 2, and IK 19. Geomagn. Aeron. 4, 201–207 (2003)

    Google Scholar 

  • Jensen, A.S., Lohmann, M.S., Benzon, H.H., Nielsen, A.S.: Full spectrum inversion of radio occultation signals. J. Radio Sci. 38, 1040 (2003). https://doi.org/10.1029/2002RS002763

    Article  ADS  Google Scholar 

  • Jin, S., Komjathy, A.: GNSS Reflectometry and Remote Sensing: New Objectives and Results. Adv. Sp. Res. 46(2), 111–117 (2010)

    Article  ADS  Google Scholar 

  • Kumar, S., Singh, A.K., Lee, J.: Equatorial Ionospheric Anomaly (EIA) and comparison with IRI of solar activity model during descending phase (2005–2009). Adv. Space Res. 53, 724–733 (2014). https://doi.org/10.1016/j.asr.2013.12.019.

    Article  ADS  Google Scholar 

  • Kuo, Y.H., Wee, T.K., Sokolovskij, S., Rocken, C., Schreiner, W.S., Hunt, D., Anthes, R.A.: Inversion and error estimation of GPS radio occultation data. J. Meteorol. Soc. Jpn. 82, 507–531 (2004)

    Article  Google Scholar 

  • Lackner, B.C., Steiner, A.K., Hegerl, G.C., Kirchengast, G.: Atmospheric climate change detection by radio occultation data using a fingerprinting method. J. Climate 24, 5275–5291 (2011). https://doi.org/10.1175/2011JCLI3966.1

    Article  ADS  Google Scholar 

  • Lei, J.H., Syndergaard, S., Burns, A.G., Solomon, S.C., Wang, W.B., Zeng, Z., Roble, R.G., Wu, Q., Kuo, Y.H., Holt, J.: Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: preliminary results. J. Geophys. Res. 112, A07308 (2007)

    ADS  Google Scholar 

  • Leroy, S.S., Dykema, J.A., Anderson, J.G.: Climate Benchmarking Using GNSS Occultation. Springer, Berlin, Heidelberg (2006)

    Book  Google Scholar 

  • Lin, C.H., Liu, J.Y., Hsiao, C.C., Liu, C.H., Cheng, C.Z., Chang, P.Y., Hsu, M.L.: Global ionospheric structure imaged by FORMOSAT-3/COS MIC: early results. Terr. Atmos. Ocean. Sci. 20, 171–179 (2009). https://doi.org/10.3319/TAO.2008.01.18.01(F3C)

    Article  Google Scholar 

  • Liu, L., Le, H., Chen, Y., He, M., Wan, W., Yue, X.: Features of the middle and low latitude ionosphere during solar minimum as revealed from COSMIC radio occultation measurements. J. Geophys. Res. 116, A09307 (2011). https://doi.org/10.1029/2011JA016691

    Article  ADS  Google Scholar 

  • Panda, S.K., Haralambous, H.: Variability of the bottomside B0 and B1 parameters of ionospheric electron density profile over Cyprus and comparison with IRI-2012 model. Adv. Space Res. 60, 317–328 (2017). https://doi.org/10.1016/j.asr.2016.08.025

    Article  ADS  Google Scholar 

  • Panda, S.K., Haralambous, H., Kavutarapu, V.: Global longitudinal behavior of IRI bottomside profile parameters from FORMOSAT-3/COSMIC ionospheric occultations. J. Geophys. Res. Space Phys. 123, 7011–7028 (2018). https://doi.org/10.1029/2018JA025246

    Article  ADS  Google Scholar 

  • Panda, S.K., Gedam, S.S.: Evaluation of GPS standard point positioning with various ionospheric error mitigation techniques. J. Appl. Geod. 10(4), 211–221 (2016). https://doi.org/10.1515/jag-2016-0019.

    Article  ADS  Google Scholar 

  • Panda, S.K., Gedam, S.S., Rajaram, G., Sripathi, S., Bhaskar, A.: Impact of the 15 January 2010 annular solar eclipse on the equatorial and low latitude ionosphere over the Indian region. J. Atmos. Sol.-Terr. Phys. 135, 181–191 (2015). https://doi.org/10.1016/j.jastp.2015.11.004

    Article  ADS  Google Scholar 

  • Pelliccia, F., Bonafoni, S., Basili, P., Ciotti, P., Pierdicca, N.: Atmospheric profiling in the inter-tropical ocean area based on neural network approach using GPS radio occultations. Open Atmos. Sci. J. 24, 202–209 (2010)

    Google Scholar 

  • Potula, B.S., Chu, Y.H., Uma, G., Hsia, H.P.: A global comparative study on the ionospheric measurements between COSMIC radio occultation technique and IRI model. J. Geophys. Res., Atmos. 116, 1–24 (2011). https://doi.org/10.1029/2010JA015814

    Article  Google Scholar 

  • Prasad, S.N.V.S., Rama Rao, P.V.S., Prasad, D.S.V., Venkatesh, K., Niranjan, K.: On the variabilities of the Total Electron Content (TEC) over the Indian low latitude sector. Adv. Space Res. 49, 898–913 (2012)

    Article  ADS  Google Scholar 

  • Rocken, C., Kuo, Y.H., Schreiner, W.S., Hunt, D., Sokolovskiy, S., McCormick C.: COSMIC system description. Terr. Atmos. Ocean. Sci. 11, 21–52 (2000)

    Article  Google Scholar 

  • Scherllin-Pirscher, B., Kirchengast, G., Steiner, A.K., Kuo, Y.H., Foelsche, U.: Quantifying uncertainty in climatological fields from GPS radio occultation: an empirical-analytical error model. Atmos. Meas. Tech. 4, 2019–2034 (2011). https://doi.org/10.5194/amt-4-2019-2011

    Article  Google Scholar 

  • Schroeder, T., S., L., M., S.: Validating the microwave sounding unit stratospheric record using GPS occultation. Geophys. Res. Lett. 30 (2003). https://doi.org/10.1029/2003GL017588

  • Shimeis, A., Amory-Mazaudier, C., Fleury, R., Mahrous, A.M., Hassan, A.F.: Transient variations of vertical total electron content over some African stations from 2002 to 2012. Adv. Space Res. 54, 2159–2171 (2014)

    Article  ADS  Google Scholar 

  • Space.skyrocket.de: FORMOSAT 7/COSMIC-2. https://space.skyrocket.de/doc_sdat/formosat-7-cosmic-2.htm

  • Stankov, S.M., Stegen, K., Muhtarov, P., Warnant, R.: Local ionospheric electron density profile reconstruction in real time from simultaneous ground-based GNSS and ionosonde measurements. Adv. Space Res. 47, 1172–1180 (2010). https://doi.org/10.1016/j.asr.2010.11.039

    Article  ADS  Google Scholar 

  • Steiner, A.K., Kirchengast, G., Foelsche, U., Kornblueh, L., Manzini, E., Bengtsson, L.: GNSS occultation sounding for climate monitoring. Phys. Chem. Earth, Part A, Solid Earth Geod. 26, 113–124 (2001)

    Article  Google Scholar 

  • Syndergaard, S., Schreiner, W.S., Rocken, C., Hunt, D.C., Dymond, K.F.: Preparing for COSMIC: inversion and analysis of ionospheric data products. In: Atmosphere and Climate: Studies by Occultation Methods. Springer, New York (2006)

    Google Scholar 

  • Yamazaki, Y., Stolle, C., Matzka, J., Liu, H., Tao, C.: Interannual variability of the daytime equatorial ionospheric electric field. J. Geophys. Res. 123, 4241–4256 (2018). https://doi.org/10.1029/2017JA025165

    Article  Google Scholar 

  • Yue, X., Schreiner, W.S., Kuo, Y.: GNSS Radio Occultation Observations as a Data Source for Ionospheric Assimilation: COSMIC-1 & COSMIC-2. 52, 2275753 (2014). https://doi.org/10.1029/2012JA017968

  • Yue, X., Schreiner, W.S., Kuo, Y., Hunt, D.C., Rocken, C.: GNSS radio occultation technique and space weather monitoring. In: Proceedings of the 26th International Technical Meeting of the ION Satellite Division, Nashville, Tennessee (2013)

    Google Scholar 

  • Zakharenkova, I.E., Krankowski, A., Shagimuratov, I.I., Cherniak, Y.V., Krypiak-Gregorczyk, A., Wielgosz, P., Lagovsky, A.: Observation of the ionospheric storm of October 11, 2008 using FORMOSAT-3/COSMIC data. Earth Planets Space 64, 505–512 (2012). https://doi.org/10.5047/eps.2011.06.046

    Article  ADS  Google Scholar 

  • Zhang, K., Fu, E., Silcock, D., Wang, Y., Kuleshov, Y.: An investigation of atmospheric temperature profiles in the Australian region using collocated GPS radio occultation and radiosonde data. Atmos. Meas. Tech. 4, 2087–2092 (2011). https://doi.org/10.5194/amt-4-2087-2011

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Majmaah University for funding this work under project number (RGP-2019-25). The authors wish to acknowledge the University Corporation for Atmospheric Research (UCAR) and the Taiwan’s National Space Organization (NSPO) for freely making available the COSMIC ionospheric profiles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Sharma.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moses, M., Panda, S.K., Sharma, S.K. et al. Ionospheric electron density characteristics over Africa from FORMOSAT-3/COSMIC radio occultation. Astrophys Space Sci 365, 116 (2020). https://doi.org/10.1007/s10509-020-03833-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-020-03833-2

Keywords

Navigation