Skip to main content
Log in

Adsorption of cytarabine and gemcitabine anticancer drugs on the BNNT surface: DFT and GD3-DFT approaches

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

In this work, at first, in order to find the most stable conformers of the two types of anticancer cytarabine (CYT) and gemcitabine (GEM) drugs, the potential energy curves for rotation around the C1′-N bond were explored at M06-2X/6–311 +  + G(2d,2p) level of theory. Adsorption of the most stable conformers of CYT and GEM drugs on the BNNT surface was explored. Depending on the orientation of CYT and GEM drugs on the outside surface of the BNNT, two different types of drug-BNNT adsorption complexes (A and B) were found on the potential energy surface. Dispersion corrected adsorption energies at M06-2X/6–31 + G(d)-GD3 level were in the range − 19.7 to − 26.1 kcal mol−1 for A1–A4 and − 21.7 to − 24.6 kcal mol−1 for B1–B4. The results show that adsorptions of CYT and GEM drugs on the BNNT surface in the water solvent are energetically favorable process. The structural and electronic density properties, charge transfer values, global reactivity descriptors and the molecular electrostatic potential maps of the drug-BNNT complexes were evaluated. It is anticipated that the complex formation accompanied by charge transfer between BNNT and drugs and the decrease in the HOMO − LUMO energy gap. The NCI (non-covalent interaction) analysis shows the role and importance of the cooperative π − π stacking and H-bonding interactions on the adsorption of drugs on the BNNT surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aires, A., Ocampo, S.M., Simões, B.M., Rodrigez, M.J., Cadenas, J.F., Couleaud, P., Spence, K., Latorre, A., Miranda, R., Somoza, Á., Clarke, R.B., Carrascosa, J.L., Cortajarena, A.L.: Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology 27, 065103 (2016)

    PubMed  Google Scholar 

  • Arsawang, U., Saengsawang, O., Rungrotmongkol, T., Sornmee, P., Wittayanarakul, K., Remsungnend, T., Hannongbua, S.: How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system? J. Mol. Graphics Modell. 29, 591–596 (2011)

    CAS  Google Scholar 

  • Bader, R.F.W.: A quantum theory of molecular structure and its appllcatlons. Chem. Rev. 91(5), 893–928 (1991)

    CAS  Google Scholar 

  • Bianco, A., Kostarelos, K., Prato, M.: Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9, 674–679 (2005)

    CAS  PubMed  Google Scholar 

  • Biegler-König, F., Schönbohm, J., Bayles, D.: AIM2000−A program to analyze and visualize atoms in molecules. J. Comp. Chem 22, 545–559 (2001)

    Google Scholar 

  • Bottini, M., Bruckner, S., Nika, K., Bottini, N., Bellucci, S., Magrini, A., Bergamaschi, A., Mustelin, T.: Multi-walled Carbon Nanotubes Induce T Lymphocyte Apoptosis. Toxicol. Lett. 160, 121–126.25 (2006)

    CAS  PubMed  Google Scholar 

  • Breneman, C.M., Wiberg, K.B.: Determining atom-centered monopoles from molecular electrostatic potentials—the need for high sampling density in formamide conformational-analysis. J. Comp. Chem. 11, 361–373 (1990)

    CAS  Google Scholar 

  • Burns, L.A., Vazquez-Mayagoitia, A., Sumpter, B.G., Sherrill, C.D.: Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. J. Chem. Phys. 134, 08407–8425 (2011)

    Google Scholar 

  • Chattaraj, P.K., Sarkar, U., Roy, D.R.: Electrophilicity Index. Chem. Rev. 106, 2065–2091 (2006)

    CAS  PubMed  Google Scholar 

  • Chen, X., Kis, A., Zettl, A., Bertozzi, C.R.: A cell nanoinjector based on carbon nanotubes. Proc. Natl. Acad. Sci. USA 104, 8218 (2007)

    CAS  PubMed  Google Scholar 

  • Chen, X., Tam, U.C., Czlapinski, J.L., Lee, G.S., Rabuka, D., Zettl, A., Bertozzi, C.R.: Interfacing carbon nanotubes with living cells. J. Am. Chem. Soc. 128, 6292–6293 (2006)

    CAS  PubMed  Google Scholar 

  • Chen, X., Wu, P., Rousseas, M., Okawa, D., Gartner, Z., Zettl, A., Bertozzi, C.R.: Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with protein and cells. J. Am. Chem. Soc. 28(890–891), 26 (2009)

    Google Scholar 

  • Chigo Anota, E., Cocoletzi, G.H., Garay Tapia, A.M.: Armchair Boron Nitride nanotubes—heterocyclic molecules interactions: a computational description. Open Chem. 13, 734–742 (2015)

    Google Scholar 

  • Chung, L.W., Sameera, W.M.C., Ramozzi, R., Page, A.J., Hatanaka, M., Petrova, G.P., Harris, T.V., Li, X., Ke, Z., Liu, F., Li, H.-B., Ding, L., Morokuma, K.: The ONIOM method and its applications. Chem. Rev. 115(12), 5678–5796 (2015)

    CAS  PubMed  Google Scholar 

  • Ciofani, G., Danti, S., D'Alessandro, D., Ricotti, L., Moscato, S., Bertoni, G., Falqui, A., Berrettini, S., Petrini, M., Mattoli, V.: Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano 4, 6267–6277 (2010)

    CAS  PubMed  Google Scholar 

  • Ciofani, G., Raffa, V., Menciassi, A., Cuschieri, A.: Cytocompatibility, interactions, and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol. Bioeng. 101, 850–858 (2008)

    CAS  PubMed  Google Scholar 

  • Ciofani, G., Raffa, V., Yu, J., Chen, Y., Obata, Y., Takeoka, S., Menciassi, A., Cuschieri, A.: Boron Nitride Nanotubes: A Novel Vector for Targeted Magnetic Drug Delivery. Curr. Nanosci. 5, 33–38 (2009)

    CAS  Google Scholar 

  • Contreras-García, J., Johnson, E.R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D.N., Yang, W.: NCIPLOT: a program for plotting noncovalent interaction regions. J. Chem. Theory Comput. 7, 625–632 (2011)

    PubMed  PubMed Central  Google Scholar 

  • Cui, D., Tian, F., Ozkan, C.S., Wang, M., Gao, H.: Effect of Single Wall Carbon Nanotubes on Human HEK293 Cells. J. Toxicol. Lett. 155, 73–85 (2005)

    CAS  Google Scholar 

  • Dapprich, S., Komaromi, I., Byun, K.S., Morokumaa, K., Frisch, M.J.: A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J. Mol. Struct. (Theochem) 461–462, 1–21 (1999)

    Google Scholar 

  • Dumortier, H., Lacotte, S., Pastorin, G., Marega, R., Wu, W., Bonifazi, D., Briand, J.P., Prato, M., Muller, S., Bianco, A.: Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. NanoLett. 6, 1522–1528 (2006)

    CAS  Google Scholar 

  • Farmanzadeh, D., Ghazanfary, S.: DFT studies of functionalized zigzag and armchair boron nitride nanotubes as nanovectors for drug delivery of collagen amino acids. Struct. Chem. 25, 293–300 (2014a)

    CAS  Google Scholar 

  • Farmanzadeh, D., Ghazanfary, S.: BNNTs under the influence of external electric field as potential newdrug delivery vehicle of Glu, Lys, Gly and Ser amino acids: a first-principles study. Appl. Surf. Sci. 320(391–399), 30 (2014b)

    Google Scholar 

  • Feazell, R.P., Nakayama-Ratchford, N., Dai, H., Lippard, S.J.: Soluble single-walled carbon nanotubes as longboat delivery systems for platinum (IV) anticancer drug design. J Am Chem Soc. 129, 8438–8439 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira, T.H., Hollanda, L.M., Lancellotti, M., de Sousa, E.M.B.: Boron nitride nanotubes chemically functionalized with glycol chitosan for gene transfection in eukaryotic cell lines. J. Biomed. Mater. Res Part A 103, 2176–2185 (2015)

    CAS  Google Scholar 

  • Ferreira, T.H., de Sousa, E.M.B.: Chapter 6—applications and perspectives of boron nitride nanotubes in cancer therapy. In: Ciofani, G., Mattoli, V. (eds.) Boron Nitride Nanotubes in Nanomedicine, pp. 95–109. Elsevier, New York (2016)

    Google Scholar 

  • Frisch, M., Trucks, G., Schlegel, H.B., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.: Gaussian 09, Revision A. 02. Gaussian, Inc, Wallingford, CT (2009)

    Google Scholar 

  • Gao, Z., Zhi, C., Bando, Y., Golberg, D., Serizaw, T.: Noncovalent functionalization of boron nitride nanotubes in aqueous media opens application roads in nanobiomedicine. Nanobiomedicine 1, 1–14 (2014)

    Google Scholar 

  • Gao, Z., Zhi, C., Bando, Y., Golberg, D., Serizawa, T.: Functionalization of boron nitride nanotubes for applications in nanobiomedicine. In: Ciofani, G., Mattoli, V. (eds.) Boron Nitride Nanotubes in Nanomedicine A Micro and Nano Technologies, pp. 17–40. Elsevier, New York (2016)

    Google Scholar 

  • Geerlings, P., De Proft, F., Langenaeker, W.: Conceptual density functional theory. Chem. Rev. 103, 1793–1874 (2003)

    CAS  PubMed  Google Scholar 

  • Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104–154119 (2010)

    PubMed  Google Scholar 

  • Hamedani, S., Aghaie, H., Moradi, S.: A DFT study of interaction of folic acid drug on functionalized single-walled Carbon Nanotubes. J. Phys. Theor. Chem. IAU Iran Spring 11(1), 20–26.29 (2014)

    Google Scholar 

  • Hazarika, K.K., Baruah, N.N.C., Deka, R.C.: Molecular structure and reactivity of antituberculosis drug molecules isoniazid, pyrazinamide, and 2-methylheptylisonicotinate: a density functional approach. Struct. Chem. 20, 1079–1085 (2009)

    CAS  Google Scholar 

  • Hosseinzadeh, H., Atyabi, F., Dinarvand, R., Ostad, S.N.: Chitosan-Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. Int. J. Nanomed. 7(1851–1863), 24 (2012)

    Google Scholar 

  • Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14(33–38), 33 (1996)

    CAS  PubMed  Google Scholar 

  • Johnson, E.R., Keinan, S., Mori-Sanchez, P., Contreras-García, J., Cohen, A.J., Yang, W.: Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kam, N.W.S., O’Connell, M., Wisdom, J.A., Dai, H.: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. J. Proc. Natl. Acad. Sci. USA 102, 11600–11605 (2005)

    CAS  Google Scholar 

  • Kar, T., Akdim, B., Duan, X., Pachter, R.: A theoretical study of functionalized single-wall carbon nanotubes: ONIOM calculations. Chem. Phys. Lett. 392, 176–180 (2004)

    CAS  Google Scholar 

  • Kazeri-Shandiz, S., Ali Beyramabadi, S., Morsali, A.: Geometry, tautomerism and non-covalent interactions of the halofuginone drug with the carbon-nanotube and γ-Fe2O3 nanoparticles: A DFT study. J. Serb. Chem. Soc. 82(1), 1–11 (2017)

    Google Scholar 

  • Kleger, A., Perkhofer, L., Seufferlein, T.: Smarter drugs emerging in pancreatic cancer therapy. Ann. Oncol. 25, 1260–1270 (2014)

    CAS  PubMed  Google Scholar 

  • Koch, U., Popelier, P.L.A.: Characterization of C-H-O hydrogen bonds on the basis of the charge density. J. Phys. Chem. 99, 9747–9754 (1995)

    CAS  Google Scholar 

  • Kostarelos, K., Lacerda, L., Pastorin, G., Wu, W., Wieckowski, S., Luangsivilay, J., Godefroy, S., Pantarotto, D., Briand, J.P., Muller, S., Prato, M., Bianco, A.: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2, 108–113 (2007)

    CAS  PubMed  Google Scholar 

  • Kurzątkowska, K., Santiago, T., Hepel, M.: Plasmonic nanocarrier grid-enhanced Raman sensor for studies of anticancer drug delivery. Biosens. Bioelectron. 91, 780–787 (2017)

    PubMed  Google Scholar 

  • Latorre, A., Couleaud, P., Aires, A., Cortajarena, A.L., Somoza, Á.: Multifunctionalization of magnetic nanoparticles for controlled drug release: a general approach. Eur. J. Med. Chem. 82, 355–362 (2014)

    CAS  PubMed  Google Scholar 

  • Levine, I.N.: Quantum chemistry, 7th edn. Pearson Education, London (2013)

    Google Scholar 

  • Li, X., Golberg, D.: Chapter 5—Boron nitride nanotubes as drug carriers. In: Ciofani, G., Mattoli, V. (eds.) Boron Nitride Nanotubes in Nanomedicine, pp. 79–94. Elsevier, New York (2016)

    Google Scholar 

  • Lim, E.K., Jang, E., Lee, K., Haam, S., Huh, Y.M.: Delivery of cancer therapeutics using nanotechnology. Pharmaceutics 5, 294–317 (2013a)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, E.K., Jang, E., Lee, K., Haam, S., Huh, Y.M.: Delivery of cancer therapeutics using nanotechnology. Pharmaceutics 5, 294–317 (2013b)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z., Sun, X., Nakayama, N., Dai, H.: Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1, 50–56 (2007)

    PubMed  Google Scholar 

  • Llanes-Pallas, A., Yoosaf, K., Traboulsi, H., Mohanraj, J., Seldrum, T., Dumont, J., Minoia, A., Lazzaroni, R., Armaroli, N., Bonifazi, D.: Modular engineering of H-bonded supramolecular polymers for reversible functionalization of carbon nanotubes. J. Am. Chem. Soc. 133(15412–15424), 28 (2011)

    Google Scholar 

  • Lu, T., Chen, F.: Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012)

    PubMed  Google Scholar 

  • Magrez, A., Kasas, S., Salicio, V., Pasquier, N., Seo, J.W., Celio, M., Catsicas, S., Schwaller, B., Forro, L.: Cellular toxicity of carbon-based nanomaterials. Nano Lett. 6, 1121–1125 (2006)

    CAS  PubMed  Google Scholar 

  • Mahani, N.M.: ONIOM studies of interaction between single-walled carbon nanotube and gallates derivatives as anticancer agents. Nanomed. J. 4(1), 44–49 (2017)

    CAS  Google Scholar 

  • Marenich, A.V., Cramer, C.J., Truhlar, D.G.: Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009)

    CAS  PubMed  Google Scholar 

  • Matarín, O., Rimola, A.T.: Influence of defects in boron nitride nanotubes in the adsorption of molecules. Insights from B3LYP-D2* periodic simulations. Crystals 6, 63–76 (2016)

    Google Scholar 

  • Mukhopadhyay, S., Scheicher, R.H., Pandey, R., Karna, S.P.: Sensitivity of boron nitride nanotubes toward biomolecules of different polarities. J. Phys. Chem. Lett. 2, 2442–2447 (2011)

    CAS  Google Scholar 

  • Nithya, J.S.M., Pandurangan, A.: Aqueous dispersion of polymer coated boron nitride nanotubes and their antibacterial and cytotoxicity studies. RSC Adv 4, 32031–32046 (2014)

    Google Scholar 

  • Pantarotto, D., Briand, J.P., Prato, M., Bianco, A.: Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 1, 16–17.17 (2004)

    Google Scholar 

  • Parker, W.B.: Enzymology of purine and pyrimidine antimetabolites used in the treatment. Chem Rev. 109, 2880–2893 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parr, R.G., Pearson, R.G.: Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 121, 7512–7516 (1983)

    Google Scholar 

  • Parr, R.G., Szentpaly, L., Liu, S.: Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)

    CAS  Google Scholar 

  • Pascual-Ahuir, J.L., Silla, E., Tunon, I.: GEPOL: an improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface. J. Comput. Chem. 15, 1127–1138 (1994)

    CAS  Google Scholar 

  • Phan, V.H.G., Lee, E., Maeng, J.H., Thambi, T., Kim, B.S., Lee, D., Lee, D.S.: Pancreatic cancer therapy using an injectable nanobiohybrid hydrogel. RSC Adv. 6, 41644–41655 (2016)

    CAS  Google Scholar 

  • Popelier, P.L.A.: Characterization of a dihydrogen bond on the basis of the electron density. J. Phys. Chem. A 102, 1873–1878 (1998)

    CAS  Google Scholar 

  • Raissi, H., Mollania, F.: Immunosuppressive agent leflunomide: a SWNTs-immobilized dihydroortate dehydrogenase inhibitory effect and computational study of its adsorption properties on zigzag single walled (6, 0) carbon and boron nitride nanotubes as controlled drug delivery devices. Eur. J. Pharm. Sci. 56, 37–54 (2014)

    CAS  PubMed  Google Scholar 

  • Razzazan, A., Atyabi, F., Kazemi, B., Dinarvand, R.: In vivo drug delivery of gemcitabine with PEGylated single-walled carbon nanotubes. Mater. Sci. Eng., C 62, 614–625 (2016)

    CAS  Google Scholar 

  • Roohi, H., Maleki, L.: Effects of C1–3-doping on electronic and structural properties of stone-wales defective boron nitride nanotubes as well as their NO gas sensitivity. RSC Adv. 6, 11353–11369 (2016)

    CAS  Google Scholar 

  • Saikia, N., Deka, R.C.: Ab initio study on the noncovalent adsorption of camptothecin anticancer drug onto graphene, defect modified grapheme and graphene oxide. J. Comput. Aided Mol. Des. 27, 807–821 (2013)

    CAS  PubMed  Google Scholar 

  • Saikia, N., Jha, A.N., Deka, R.C.: Interaction of pyrazinamide drug functionalized carbon and boron nitride nanotubes with pncA protein: a molecular dynamics and density functional approach. RSC Adv. 3, 15102–15107 (2013)

    CAS  Google Scholar 

  • Saikia, N., Pati, S.K., Deka, R.C.: First principles calculation on the structure and electronic properties of BNNTs functionalized with isoniazid drug molecule. Appl. Nanosci. 2, 389–400 (2012)

    CAS  Google Scholar 

  • Sampath, D., Rao, V.A., Plunkett, W.: Mechanisms of apoptosis induction by nucleoside analogs. Oncogene 22, 9063–9074 (2003)

    CAS  PubMed  Google Scholar 

  • Sato, Y., Yokoyama, A., Shibata, K., Akimoto, Y., Ogino, S., Nodasaka, Y., Kohgo, T., Tamura, K., Akasaka, T., Uo, M., Motomiya, K., Jeyadevan, B., Ishiguro, M., Hatakeyama, R., Watari, F., Tohji, K.: Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol. BioSyst. 1, 176–182 (2005)

    CAS  PubMed  Google Scholar 

  • Sayes, C.M., Liang, F., Hudson, J.L., Mendez, J., Guo, W.H., Beach, J.M., Moore, V.C., Doyle, C.D., West, J.L., Billups, W.E., Ausman, K.D., Colvin, V.L.: Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161, 135–142 (2006)

    CAS  PubMed  Google Scholar 

  • Schwabe, T., Grimme, S.: Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects. Phys. Chem. Chem. Phys. 8, 4398–4401 (2006)

    CAS  PubMed  Google Scholar 

  • Schwabe, T., Grimme, S.: Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys. Chem. Chem. Phys. 9, 3397–3406 (2007)

    CAS  PubMed  Google Scholar 

  • Star, A., Tu, E., Niemann, J., Gabriel, J.C.P., Joiner, C.S., Valcke, C.: Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl. Acad. Sci. USA 103, 921 (2006)

    CAS  PubMed  Google Scholar 

  • Svensson, M., Humbel, S., Froese, R., Matsubara, T., Sieber, S., Morokuma, K.: ONIOM: a multilayered integrated MO/MM method for geometry optimizations and single point energy predictions a test for Diels-Alder reactions and Pt(P(t- Bu)3)2 + H2 oxidative addition. J. Phys. Chem. 100, 19357–19363 (1996)

    CAS  Google Scholar 

  • Tacar, O., Sriamornsak, P., Dass, C.R.: Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol 65(2), 157–170 (2013)

    CAS  PubMed  Google Scholar 

  • Thota, R., Pauff, J.M., Berlin, J.D.: Treatment of metastatic pancreatic adenocarcinoma: a review. Oncology 28, 70–74 (2014)

    PubMed  Google Scholar 

  • Tomasi, J., Mennucci, B., Cammi, R.: Quantum mechanical continuum solvation models. Chem Rev. 105(2999–3094), 32 (2005)

    Google Scholar 

  • Vreven, T., Byun, K.S., Komaromi, I., Dapprich, S., Montgomery, J.A.J., Morokuma, K., Frisch, M.J.: Combining quantum mechanics methods with molecular mechanics methods in ONIOM. J. Chem. Theory Comput. 2, 815–826 (2006)

    CAS  PubMed  Google Scholar 

  • Vreven, T., Thompson, L.M., Larkin, S.M., Kirker, I., Bearpark, M.J.: Deconstructing the ONIOM Hessian: investigating method combinations for transition structures. J. Chem. Theory Comput. 8, 4907–4914 (2012)

    CAS  PubMed  Google Scholar 

  • Wagle, D., Kamath, G., Baker, G.A.: Elucidating Interactions between Ionic liquids and polycyclic aromatic hydrocarbons by Quantum Chemical Calculations. J. Phys. Chem. C 117, 4521–4532 (2013)

    CAS  Google Scholar 

  • Wang, J., Lee, C.H., Yap, Y.K.: Recent advancements in boron nitride nanotubes. Nanoscale 2, 2028–2034 (2010)

    CAS  PubMed  Google Scholar 

  • Wang, Y., Xu, Z.: Interaction mechanism of doxorubicin and SWCNT: protonation and diameter effects on drug loading and releasing. RSC Adv. 6, 314–323 (2016)

    CAS  PubMed  Google Scholar 

  • Wang, Y., Xu, Z., Moe, Y.N.: On the performance of local density approximation in describing the adsorption of electron donating/accepting molecules on graphene. Chem. Phys. 406, 78–85 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L., Lieber, C.M.: Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology. Nature 394, 52–55 (1998)

    CAS  PubMed  Google Scholar 

  • Wong, B.S., Yoong, S.L., Jagusiak, A., Panczyk, T., Ho, H.K., Ang, W.H., Pastorin, G.: Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev. 65(15), 1964–2015 (2013)

    CAS  PubMed  Google Scholar 

  • Yu, J., Ahn, J., Yoon, S.F., Zhang, Q., Gan, B., Chew, K., Yu, M.B.: Semiconducting boron carbonitride nanostructures: Nanotubes and nanofibers. Appl. Phys. Lett. 2000, 77 (1949)

    Google Scholar 

  • Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2006)

    Google Scholar 

  • Zhao, Y., Wu, X., Yang, J., Zeng, X.C.: Ab initio theoretical study of non-covalent adsorption of aromatic molecules on boron nitride nanotubes. Phys. Chem. Chem. Phys. 13, 11766–11772 (2011)

    CAS  PubMed  Google Scholar 

  • Zhi, C., Bando, Y., Tang, C., Honda, S., Sato, K., Kuwahara, H., Golberg, D.: Covalent functionalization: towards soluble multiwalled boron nitride nanotubes. Angew. Chem. Int. Ed. 44, 7932–7935 (2005a)

    CAS  Google Scholar 

  • Zhi, C., Bando, Y., Tang, C., Honda, S., Sato, K., Kuwahara, H., Golberg, D.: Characteristics of boron nitride nanotube–polyaniline composites. Angew Chem. 44, 7929–7932 (2005b)

    CAS  Google Scholar 

  • Zhi, C., Bando, Y., Tang, C., Honda, S., Sato, K., Kuwahara, H., Golberg, D.: Purification of boron nitride nanotubes through polymer wrapping. J. Phys. Chem. B 110, 1525–1528 (2006)

    CAS  PubMed  Google Scholar 

  • Zhi, C.Y., Bando, Y., Tang, C.C., Huang, Q., Golberg, D.: Boron nitride nanotubes: functionalization and composites. J. Mater. Chem. 18, 3900–3908 (2008)

    CAS  Google Scholar 

  • Zhi, C., Bando, Y., Tang, C., Kuwahara, H., Golberg, D.: Grafting boron nitride nanotubes: from polymers to amorphous and graphitic carbon. J. Phys. Chem. C 111, 1230–1233 (2007b)

    CAS  Google Scholar 

  • Zhi, C., Bando, Y., Wang, W., Tang, C., Kuwahara, H., Golberg, D.: DNA-mediated assembly of boron nitride nanotubes. Chem. Asian J. 2, 1581–1585 (2007a)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Roohi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roohi, H., Facehi, A. & Ghauri, K. Adsorption of cytarabine and gemcitabine anticancer drugs on the BNNT surface: DFT and GD3-DFT approaches. Adsorption 26, 1365–1384 (2020). https://doi.org/10.1007/s10450-020-00247-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-020-00247-y

Keywords

Navigation