Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 12, 2020

On tungstates of divalent cations (III) – Pb5O2[WO6]

  • Stephan G. Jantz , Florian Pielnhofer and Henning A. Höppe ORCID logo EMAIL logo

Abstract

Pb5O2[WO6] was discovered as a frequently observed side phase during our investigation on lead tungstates. Its crystal structure was solved by single-crystal X-ray diffraction (P21/n, a=7.4379(2) Å, b=12.1115(4) Å, c=10.6171(3) Å, β=90.6847(8)°, Z=4, Rint=0.038, R1=0.020, ωR2=0.029, 4188 data, 128 param.) and is isotypic with Pb5O2[Te6]. Pb5O2[WO6] comprises a layered structure built up by non-condensed [WO6]6 octahedra and [O4Pb10]12+ oligomers. The compound was characterised by spectroscopic measurements (Infrared (IR), Raman and Ultraviolet–visible (UV/Vis) spectra) as well as quantum chemical and electrostatic calculations (density functional theory (DFT), MAPLE) yielding a band gap of 2.9 eV fitting well with the optical one of 2.8 eV. An estimation of the refractive index based on the Gladstone-Dale relationship yielded n2.31. Furthermore first results of the thermal analysis are presented.


Dedicated to Professor Dr. Ulrich Müller on the occasion of his 80th birthday.



Corresponding author: Henning A. Höppe, Lehrstuhl für Festkörperchemie, Universität Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany, E-mail:

Acknowledgement

F.P. thanks Prof. Bettina Lotsch, Dr. Ulrich Wedig and the Computer Service group from the Max-Planck-Institute for Solid State Research (Stuttgart, Germany) for access to CRYSTAL17 and computational facilities.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Netzsch, P., Gross, P., Takahashi, H., Lotfi, S., Brgoch, J., Höppe, H. A. Eur. J. Inorg. Chem. 2019, 36, 3975–3981.10.1002/ejic.201900838Search in Google Scholar

2. Blasse, G., Bril, A. J. Chem. Phys. 1966, 45, 2350–2355.10.1063/1.1727945Search in Google Scholar

3. Schustereit, T., Netzsch, P., Höppe, H. A., Hartenbach, I. Z. Anorg. Allg. Chem. 2018, 644, 1749–1753.10.1002/zaac.201800322Search in Google Scholar

4. Jantz, S. G., Pielnhofer, F., Dialer, M., Höppe, H. A. Z. Anorg. Allg. Chem. 2017, 643, 2024–2030.10.1002/zaac.201700334Search in Google Scholar

5. Jantz, S. G., Pielnhofer, F., Dialer, M., Höppe, H. A. Z. Anorg. Allg. Chem. 2017, 643, 2031–2037.10.1002/zaac.201700335Search in Google Scholar

6. Artner, C., Weil, M. J. Solid State Chem. 2013, 199, 240–247.10.1016/j.jssc.2012.12.007Search in Google Scholar

7. Shannon, R. D. Acta Crystallogr. 1976, B32, 751–767.10.1107/S0567739476001551Search in Google Scholar

8. Balić-Žunić, T., Makovicky, E. Acta Crystallogr. B 1996, 52, 78–81.10.1107/S0108768195008251Search in Google Scholar

9. Makovicky, E., Balić-Žunić, T. Acta Crystallogr. B 1998, 54, 766–773.10.1107/S0108768198003905Search in Google Scholar

10. M. Kunz, Brown, I. D. J. Solid State Chem. 1995, 115, 395–406.10.1006/jssc.1995.1150Search in Google Scholar

11. Jantz, S. G., Dialer, M., Bayarjargal, L., Winkler, B., van Wüllen, L., Pielnhofer, F., Brgoch, J., Weihrich, R., Höppe, H. A. Adv. Opt. Mater. 2018, 6, 1800497.10.1002/adom.201800497Search in Google Scholar

12. Klüfers, P. “Personal communication”, calculation of [Sn(H2O)3]2+ on BP86/def2- tzvp niveau (van-der-Waals correction, modelled aqueous environment) yields antibonding Sn-O interactions besides s contribution of Sn and an O-Sn-O angle of approx. 78.5°.Search in Google Scholar

13. Hoppe, R. Angew. Chem. Int. Ed. 1966, 5, 95–106.10.1002/anie.196600951Search in Google Scholar

14. Hoppe, R. Angew. Chem. Int. Ed. 1970, 9, 25–34.10.1002/anie.197000251Search in Google Scholar

15. Hübenthal, R. MAPLE Program for the Calculation of the Madelung Part of Lattice Energy; Justus-Liebig-University Giessen: Germany, 1993.Search in Google Scholar

16. Kay, M. Acta Crystallogr. 1961, 14, 80–81.10.1107/S0365110X61000309Search in Google Scholar

17. Loopstra, B. O., Rietveld, H. M. Acta Crystallogr. B 1969, 25, 1420–1421.10.1107/S0567740869004146Search in Google Scholar

18. Demkov, A., Navrotsky, A. Materials Fundamentals of Gate Dielectrics; Springer Netherlands: Dordrecht, 2006.10.1007/1-4020-3078-9Search in Google Scholar

19. Mandarino, J. A. Can. Mineral. 1981, 19, 441–450.Search in Google Scholar

20. Gladstone, J. H., Dale, T. P. Philos. Trans. Roy. Soc. London 1863, 153, 317–343.10.1098/rstl.1863.0014Search in Google Scholar

21. Larsen, E., Geological Survey U.S.The Microscopic Determination of the Nonopaque Minerals; U.S. Government Printing Office: Washington, DC, 1921.Search in Google Scholar

22. Sheldrick, G. Acta Crystallogr. B 2008, 64, 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

23. Dovesi, R., Saunders, V. R., Roetti, C., Orlando, R., Zicovich-Wilson, C. M., Pascale, F., Civalleri, B., Doll, K., Harrison, N. M., Bush, I. J., D'Arco, P., Llunel, M., Causà, M., Noël, Y., Maschio, L., Erba, A., Rérat, M., Casassa, S. CRYSTAL14 User’s Manual; University of Torino: Torino, Italy, 2014.Search in Google Scholar

24. Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., Pierre, M. D. L., D’Arco, P., Noël, Y., Causà, M., Rérat, M., Kirtman, B. Int. J. Quantum Chem. 2014, 114, 1287–1317.10.1002/qua.24658Search in Google Scholar

25. Dovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S., Kirtman, B. WIRes: Comp. Mol. Sci. 2018, 8, e1360.Search in Google Scholar

26. Dovesi, R., Saunders, V. R., Roetti, C., Orlando, R., Zicovich-Wilson, C. M., Pascale, F., Civalleri, B., Doll, K., Harrison, N. M., Bush, I. J., D'Arco, P., Llunel, M., Causà, M., Noël, Y., Maschio, L., Erba, A., Rérat, M., Casassa, S. CRYSTAL17 User’s Manual; University of Torino: Torino, Italy, 2017.Search in Google Scholar

27. Vosko, S. H., Wilk, L., Nusair, M. Can. J. Phys. 1980, 58, 1200–1211.10.1139/p80-159Search in Google Scholar

28. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868.10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed

29. Becke, A. D. Phys. Rev. A 1988, 38, 3098–3100.10.1103/PhysRevA.38.3098Search in Google Scholar

30. Heyd, J., Scuseria, G. E., Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207–8215.10.1063/1.1564060Search in Google Scholar

31. Sophia, G., Baranek, P., Sarrazin, C., Rérat, M., Dovesi, R. Phase Trans. 2013, 86, 1069–1084.10.1080/01411594.2012.754442Search in Google Scholar

32. ECP60MHFBasis set ECP60MHF for W; University of Cologne: Germany. http://www.tc.uni-koeln.de/PP/clickpse.en.html.Search in Google Scholar

33. Scaranto, J., Giorgianni, S. J. Mol. Struct.: Theochem 2008, 858, 72–76.10.1016/j.theochem.2008.02.027Search in Google Scholar

34. Canepa, P., Hanson, R. M., Ugliengo, P., Alfredsson, M. J. Appl. Crystallogr. 2014, 44, 225–229.10.1107/S0021889810049411Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0041).


Received: 2020-04-16
Accepted: 2020-04-22
Published Online: 2020-07-12
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2020-0041/html
Scroll to top button