Skip to main content
Log in

Determining the Orbit Onboard a Space Vehicle

  • NAVIGATION SYSTEMS
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

Methods and algorithms for determining the orbit of a space vehicle onboard using the measurements of global navigation satellite (NS) systems are considered. Methods and algorithms for obtaining radio navigation measurements in the case of the highly dynamic orbital motion are described. The celestial mechanics interpretation of measurements is given. Algorithms for the three-phase processing of trajectory measurements that improve the reliability and accuracy of determining the orbit are proposed. A mathematical model of a simulator of the satellite navigation signals is developed. The computational results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. L. Akim, A. P. Astakhov, R. V. Bakit’ko, V. P. Pol’shchikov, V. A. Stepan’yants, A. G. Tuchin, and D. A. Tuchin, “Autonomous navigation system of near-Earth spacecraft,” J. Comput. Syst. Sci. Int. 48, 295 (2009).

    Article  Google Scholar 

  2. D. A. Tuchin, “Autonomous spacecraft’s on-board orbit determination,” KIAM Preprint No. 7 (Keldysh Inst. Appl. Math., Moscow, 2019).

    Google Scholar 

  3. E. L. Akim, M. A. Kapralov, V. A. Stepan’yants, A. G. Tuchin, and D. A. Tuchin, “Parameter determination of the spacecraft by the onboard navigation system on measurements of doppler and pseudorange of space satellite systems,” KIAM Preprint No. 20 (Keldysh Inst. Appl. Math., Moscow, 2004).

    Google Scholar 

  4. D. A. Tuchin, “The algorithms of navigation satellites signals reception on board the spacecraft using a correlator,” KIAM Preprint No. 4 (Keldysh Inst. Appl. Math., Moscow, 2018).

    Google Scholar 

  5. GLONASS. Principles of Design and Operation, Ed. by A. I. Perov and V. N. Kharisov, 4th ed. (Radiotekhnika, Moscow, 2010) [in Russian].

    Google Scholar 

  6. I. V. Kudryavtsev, I. N. Mishchenko, A. I. Volynkin, et al., On-Board Devices of Satellite Radio Navigation, Ed. by V. S. Shebshaevich (Transport, Moscow, 1988) [in Russian].

    Google Scholar 

  7. N. V. Mikhailov, Autonomous Navigation of Spacecraft Using Satellite Radio Navigation Systems (Politekhnika, St. Petersburg, 2014) [in Russian].

    Google Scholar 

  8. E. L. Akim and D. A. Tuchin, “The ionosperic errors of pseudorange measurements for LEO satellites,” KIAM Preprint No. 4 (Keldysh Inst. Appl. Math., Moscow, 2004).

    Google Scholar 

  9. E. S. Gordienko, I. S. Il’in, P. V. Mzhel’skii, E. A. Mikhailov, E. A. Palamarchuk, A. V. Pogodin, A. G. Tuchin, D. A. Tuchin, E. N. Filippova, P. A. Khudorozhkov, and V. S. Yaroshevskii, “ZOND-PP and RELEK small spacecraft ballistics, navigation and flight control,” Vestn. NPO im. S. A. Lavochkina, No. 2, 31–43 (2016).

    Google Scholar 

  10. Multifunctional Space Platform Navigator, Ed. by S. A. Lemeshevskii (FGUP NPO im. S. A. Lavochkina, Khimki, 2017) [in Russian].

  11. A. D. Dubyago, The Determination of Orbits (Takt.-Tekh. Liter., Moscow, Leningrad, 1949) [in Russian].

    Google Scholar 

  12. A. K. Platonov and R. K. Kazakova, “Creating tools for design and operational works for ballistic ensuring of space missions. Operation control work at the first computers,” KIAM Preprint No. 38 (Keldysh Inst. Appl. Math., Moscow, 2014).

    Google Scholar 

  13. T. M. Eneev, A. K. Platonov, and R. K. Kazakova, “Determination of the parameters of the orbit of an artificial satellite according to ground-based measurements,” Iskusstv. Sputn. Zemli, No. 1, 43–55 (1960).

    Google Scholar 

  14. E. L. Akim and T. M. Eneev, “Determination of motion parameters of a spacecraft based on trajectory measurements,” Kosmich. Issled. 1, 5–50 (1963).

    Google Scholar 

  15. Yu. R. Sergeeva and D. A. Tuchin, “Algorithm for determining the analytical model parameters of the navigation satellites motion,” KIAM Preprint No. 109 (Keldysh Inst. Appl. Math., Moscow, 2016).

    Google Scholar 

  16. GLONASS Global Navigation Satellite System. Interface Control Document, Revision 5.1 (Ross. Nauch.-Issled. Inst. Kosm. Priborostr., Moscow, 2002) [in Russian].

  17. Global Position System Wing (GPSW) Systems Engineering and Integration. Interface Specification IS-GPS-200, Revision E (Navstar GPS Space Segment, Navigation User Interfaces, 2010).

  18. S. V. Komovkin, S. M. Lavrenov, A. G. Tuchin, D. A. Tuchin, et al., “Celestial-mechanical interpretation of the two-way radio measurements of radial velocity of spacecraft for scientific applications,” Vestn. NPO im. S. A. La-vochkina, No. 4, 77–80 (2015).

    Google Scholar 

  19. http://www.morion.com.ru/rus/.

  20. R. Bettin, Guidance in Space (Mashinostroenie, Moscow, 1966) [in Russian].

    Google Scholar 

  21. O. Montenbruck and Th. Pfleger, Astronomy on the Personal Computer (Springer, Berlin, Heidelberg, 2000; Piter, St. Petersburg, 2002).

  22. N. Idel’son, Method of Least Squares (KUBUCh, Leningrad, 1932) [in Russian].

  23. A. G. Tuchin, “Parameter determination of the space craft motion by results of measurements provided a noise is in dynamic system,” KIAM Preprint No. 2 (Keldysh Inst. Appl. Math., Moscow, 2004).

    Google Scholar 

  24. A. G. Tuchin and A. A. Gorokhova, “Local processing of range measurements for near-Earth orbits of spacecraft,” KIAM Preprint No. 99 (Keldysh Inst. Appl. Math., Moscow, 1990).

    Google Scholar 

  25. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization (Academic, New York, London, 1981; Mir, Moscow, 1985).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Tuchin.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuchin, D.A. Determining the Orbit Onboard a Space Vehicle. J. Comput. Syst. Sci. Int. 59, 430–450 (2020). https://doi.org/10.1134/S1064230720020112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230720020112

Navigation