Skip to main content

Advertisement

Log in

Use of non-thermal plasma pre-treatment to enhance antibiotic action against mature Pseudomonas aeruginosa biofilms

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Non-thermal plasma (NTP), generated at atmospheric pressure by DC cometary discharge with a metallic grid, and antibiotics (gentamicin—GTM, ceftazidime—CFZ and polymyxin B—PMB), either alone or in combination, were used to eradicate the mature biofilm of Pseudomonas aeruginosa formed on Ti-6Al-4V alloy. Our aim was to find the conditions for NTP pre-treatment capable of enhancing the action of the antibiotics and thus reducing their effective concentrations. The NTP treatment increased the efficacy of relatively low concentrations of antibiotics. Generally, the highest effect was achieved with GTM, which was able to suppress the metabolic activity of pre-formed P. aeruginosa biofilms in the concentration range of 4–9 mg/L by up to 99%. In addition, an apparent decrease of biofilm-covered area was confirmed after combined NTP treatment and GTM action by SYTO®13 staining using fluorescence microscopy. Scanning electron microscopy confirmed a complete eradication of P. aeruginosa ATCC 15442 mature biofilm from Ti-6Al-4V alloy when using 0.25 h NTP treatment and subsequent treatment by 8.5 mg/L GTM. Therefore, NTP may be used as a suitable antibiofilm agent in combination with antibiotics for the treatment of biofilm-associated infections caused by this pathogen.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramzon N, Joaquin JC, Bray J, Brelles-Marińo G (2006) Biofilm destruction by RF high-pressure cold plasma jet. IEEE Trans Plasma Sci 34:1304–1309

    CAS  Google Scholar 

  • Alkawareek MY, Algwari QT, Laverty G et al (2012) Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma. PLoS ONE 7:e44289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alkawareek MY, Gorman SP, Graham WG et al (2014) Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. Int J Antimicrob Agents 43:154–160

    CAS  PubMed  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223

    CAS  PubMed  Google Scholar 

  • Campoccia D, Montanaro L, Arciola CR (2006) The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27:2331–2339

    CAS  PubMed  Google Scholar 

  • Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 86:1267–1279

    CAS  PubMed  Google Scholar 

  • Ciofu O, Tolker-Nielsen T (2019) Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents—how P. aeruginosa can escape antibiotics. Front Microbiol 10:913

    PubMed  PubMed Central  Google Scholar 

  • Cole SJ, Records AR, Orr MW et al (2014) Catheter-associated urinary tract infection by Pseudomonas aeruginosa is mediated by exopolysaccharide-independent biofilms. Infect Immun 82:2048–2058

    PubMed  PubMed Central  Google Scholar 

  • Conrads H, Schmidt M (2000) Plasma generation and plasma sources. Plasma Sources Sci Technol 9:441

    CAS  Google Scholar 

  • Davey ME, O´toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davey ME, Caiazza NC, O'Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP et al (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    CAS  PubMed  Google Scholar 

  • Du S, Kuo H, Cheng C et al (2010) Molecular mechanisms of ceftazidime resistance in Pseudomonas aeruginosa isolates from canine and human infections. Vet Med 55:172–182

    CAS  Google Scholar 

  • Du T et al (2013) Effect of modified nonequilibrium plasma with chlorhexidine digluconate against endodontic biofilms in vitro. J Endod 39:1438–1443

    PubMed  Google Scholar 

  • Dufour D, Leung V, Lévesque CM (2010) Bacterial biofilm: structure, function, and antimicrobial resistance. Endod Topics 22:2–16

    Google Scholar 

  • Flynn PB, Busetti A, Wielogorska E et al (2016) Non-thermal plasma exposure rapidly attenuates bacterial AHL-dependent quorum sensing and virulence. Sci Rep 6:26320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geetha M, Singh AK, Asokamani R et al (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425

    CAS  Google Scholar 

  • Gilbert KB, Kim TH, Gupta R et al (2009) Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol Microbiol 73:1072–1085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L et al (2018) Gas plasma pre-treatment increases antibiotic sensitivity and persister eradication in methicillin-resistant Staphylococcus aureus. Front Microbiol 9:537

    PubMed  PubMed Central  Google Scholar 

  • Gupta TT, Karki SB, Matson JS et al (2017) Sterilization of biofilm on a titanium surface using a combination of nonthermal plasma and chlorhexidine digluconate. Biomed Res Int 2017:1–11

    Google Scholar 

  • Hermsen ED, Sullivan CJ, Rotschafer JC (2003) Polymyxins: pharmacology, pharmacokinetics, pharmacodynamics, and clinical applications. Infect Dis Clin N Am 17:545–562

    Google Scholar 

  • Jimenez PN, Koch G, Thompson JA et al (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76:46–65

    CAS  PubMed  Google Scholar 

  • Julák J, Scholtz V, Vaňková E (2018) Medically important biofilms and non-thermal plasma. World J Microbiol Biotechnol 34:178

    PubMed  Google Scholar 

  • Julák J., Vaňková E., Válková M et al (2020) Combination of non-thermal plasma and subsequent antibiotic treatment for biofilm re-development prevention. Folia Microbiol.

  • Khun J, Scholtz V, Hozák P et al (2018) Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci Technol 27:065002

    Google Scholar 

  • Klebes M, Ulrich C, Kluschke F et al (2015) Combined antibacterial effects of tissue-tolerable plasma and a modern conventional liquid antiseptic on chronic wound treatment. J Biophotonics 8:382–391

    CAS  PubMed  Google Scholar 

  • Koban I, Geisel MH, Holtfreter B et al (2013) Synergistic effects of nonthermal plasma and disinfecting agents against dental biofilms in vitro. ISRN Dent 2013:1–10

    Google Scholar 

  • Kvam E, Davis B, Mondello F et al (2012) Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage. Antimicrob Agents Chemother 56:2028–2036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matthes R, Koban I, Bender C et al (2013) Antimicrobial efficacy of an atmospheric pressure plasma jet against biofilms of Pseudomonas aeruginosa and Staphylococcus epidermidis. Plasma Processes Polym 10:161–166

    CAS  Google Scholar 

  • Mulani MS, Kamble EE, Kumkar SN et al (2019) Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 10:539

    PubMed  PubMed Central  Google Scholar 

  • Mulcahy LR, Isabella VM, Lewis K (2014) Pseudomonas aeruginosa biofilms in disease. Microb Ecol 68:1–12

    CAS  PubMed  Google Scholar 

  • Paldrychová M, Vaňková E, Scholtz V et al (2019) Effect of non-thermal plasma on AHL-dependent QS systems and biofilm formation in Pseudomonas aeruginosa: difference between non-hospital and clinical isolates. AIP Adv 9:055117

    Google Scholar 

  • Pandey R, Berendt A, Athanasou N et al (2000) Histological and microbiological findings in non-infected and infected revision arthroplasty tissues. Arch Orth Traum Surg 120:570–574

    CAS  Google Scholar 

  • Peeters E, Nelis HJ, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 72:157–165

    CAS  PubMed  Google Scholar 

  • Ren H, Liu Y, Zhou J, Long Y, Liu C, Xia B, Shi J, Fan Z, Liang Y, Chen S, Xu J, Wang P, Zhang Y, Zhu G, Liu H, Jin Y, Bai F, Cheng Z, Jin S, Wu W (2019) Combination of azithromycin and gentamicin for efficient treatment of Pseudomonas aeruginosa infections. J Infect Dis 220:1667–1678

    CAS  PubMed  Google Scholar 

  • Richards DM, Brogden R (1985) Ceftazidime. Drugs 29:105–161

    CAS  PubMed  Google Scholar 

  • Scholtz V, Kvasničková E, Julák J (2013) Microbial inactivation by electric discharge with metallic grid. Acta Phys Pol A 124:62–65

    CAS  Google Scholar 

  • Sendi P, Banderet F, Graber P et al (2011) Clinical comparison between exogenous and haematogenous periprosthetic joint infections caused by Staphylococcus aureus. Clin Microbiol Infect 17:1098–1100

    CAS  PubMed  Google Scholar 

  • Soler-Arango J, Figoli C, Muraca G et al (2019) The Pseudomonas aeruginosa biofilm matrix and cells are drastically impacted by gas discharge plasma treatment: a comprehensive model explaining plasma-mediated biofilm eradication. PLoS ONE 14:1–27

    Google Scholar 

  • Sun Y, Yu S, Sun P et al (2012) Inactivation of Candida biofilms by non-thermal plasma and its enhancement for fungistatic effect of antifungal drugs. PLoS ONE 7:e40629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trautner BW, Darouiche RO (2004) Role of biofilm in catheter-associated urinary tract infection. Am J Infect Control 32:177–183

    PubMed  PubMed Central  Google Scholar 

  • Triandafillu K, Balazs DJ, Aronsson BO et al (2003) Adhesion of Pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly (vinyl chloride)(PVC) from endotracheal intubation devices. Biomaterials 24:1507–1518

    CAS  PubMed  Google Scholar 

  • Ullal AJ, Pisetsky DS, Reich CF III (2010) Use of SYTO 13, a fluorescent dye binding nucleic acids, for the detection of microparticles in vitro systems. Cytometry Part A 77:294–301

    Google Scholar 

  • van Delden C (2004) Virulence factors in Pseudomonas aeruginosa virulence and gene regulation. Springer, Boston, pp 3–45

    Google Scholar 

  • Vaňková E, Válková M, Kašparová P et al (2018) Prevention of biofilm re-development on Ti-6Al-4V alloy by cometary discharge with a metallic grid. Contrib Plasm Phys 59:166–172

    Google Scholar 

  • Vaňková E, Kašparová P, Dulíčková N et al (2020) Combined effect of lasioglossin LL-III derivative with azoles against Candida albicans virulence factors: biofilm formation, phospholipases, proteases and hemolytic activity. FEMS Yeast Res 20:foaa020

    PubMed  Google Scholar 

  • Volejníková A, Melicherčík P, Nešuta O et al (2019) Antimicrobial peptides prevent bacterial biofilm formation on the surface of polymethylmethacrylate bone cement. J Med Microbiol 68:961–972

    PubMed  Google Scholar 

  • Zavascki AP, Goldani LZ, Li J et al (2007) Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother 60:1206–1215

    CAS  PubMed  Google Scholar 

  • Zelaya A, Vandervoort K, Brelles-Mariño G (2012) Battling bacterial biofilms with gas discharge plasma. Plasma for bio-decontamination. medicine and food security. Springer, Dordrecht, pp 135–148

    Google Scholar 

  • Zimmerli W, Moser C (2012) Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol Med Microbiol 65:158–168

    CAS  PubMed  Google Scholar 

  • Zimmerli W, Sendi P (2011) Pathogenesis of implant-associated infection: the role of the host. Semin Immunopathol 33:295–306

    CAS  PubMed  Google Scholar 

  • Ziuzina D, Boehm D, Patil S et al (2015) Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS ONE 10:e0138209

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Operational Programme Prague—Competitiveness” (CZ.2.16/3.1.00/24503) and the “National Programme of Sustainability I”—NPU I LO1601 and Charles University research program “Progress Q25”.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MP, PK and ES. The first draft of the manuscript was written by MP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Conceptualization: MP and EV, Introduction: MP, Methodology: MP, Formal analysis and investigation: MP, PK and ES, Writing—original draft preparation: MP and EV, Writing—review and editing: VS, Funding acquisition: OM and JM, Resources: OM, Supervision: JJ.

Corresponding author

Correspondence to Eva Vaňková.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paldrychová, M., Vaňková, E., Kašparová, P. et al. Use of non-thermal plasma pre-treatment to enhance antibiotic action against mature Pseudomonas aeruginosa biofilms. World J Microbiol Biotechnol 36, 108 (2020). https://doi.org/10.1007/s11274-020-02891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02891-6

Keywords

Navigation