Skip to main content
Log in

UV–Visible Light Driven Photocatalytic Degradation of Ciprofloxacin by N,S Co-doped TiO2: The Effect of Operational Parameters

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Photocatalytic degradation using TiO2 is one of the most effective techniques for treating residual emerging compounds present in water. However, practical applications are limited since it only absorbs ultraviolet irradiation. Nitrogen and sulfur (N, S) co-doped TiO2 nanomaterials (N,S-TiO2) were prepared by a controlled sol–gel method; the characterization and photocatalytic activity have been studied for the removal of ciprofloxacin antibiotic under UV–Visible light. The interstitial doping of nitrogen and sulfur substitute oxygen and titanium into the TiO2 lattice, which increases the valence band and decreases the conduction band, respectively. The lowest value band-gap of 2.5 eV and the crystallite size of 5.13 nm compared to other available synthesis methods was observed on N,S-TiO2 which allowed to broaden the light absorption to the visible region. The low level electron and hole recombination was related by the N, S doping. The optimal ciprofloxacin removal was obtained at pH 5.5, a dosage of 0.05 g, initial concentration of 30 mg L−1 with a removal efficiency of 78.7%. A comparison of the effectiveness of antibiotic treatment of N,S-TiO2 with synthetic TiO2 and commercial TiO2 was also made, taking the potential for regeneration into account. The photocatalytic degradation of ciprofloxacin catalyzed by N,S-TiO2 was described by pseudo-first-order kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All datasets generated for this study are included in the manuscript files.

References

  1. Alonso JJS, El Kori N, Melián-Martel N, Del Río-Gamero B (2018) Removal of ciprofloxacin from seawater by reverse osmosis. J Environ Manage 217:337–345. https://doi.org/10.1016/j.jenvman.2018.03.108

    Article  CAS  Google Scholar 

  2. Sharma VK, Johnson N, Cizmas L et al (2016) A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere 150:702–714. https://doi.org/10.1016/j.chemosphere.2015.12.084

    Article  CAS  Google Scholar 

  3. Peng X, Hu F, Zhang T et al (2018) Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: a batch and fixed-bed column study. Bioresour Technol 249:924–934. https://doi.org/10.1016/j.biortech.2017.10.095

    Article  CAS  Google Scholar 

  4. Mekhamer W, Al-Tamimi S (2019) Removal of ciprofloxacin from simulated wastewater by pomegranate peels. Environ Sci Pollut Res 26:2297–2304. https://doi.org/10.1007/s11356-018-3639-x

    Article  CAS  Google Scholar 

  5. Grenni P, Ancona V, Barra Caracciolo A (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39. https://doi.org/10.1016/j.microc.2017.02.006

    Article  CAS  Google Scholar 

  6. Weber KP, Petersen EJ, Bissegger S et al (2014) Effect of gold nanoparticles and ciprofloxacin on microbial catabolism: a community-based approach. Environ Toxicol Chem 33:44–51. https://doi.org/10.1002/etc.2412

    Article  CAS  Google Scholar 

  7. Van TT, Nguyen DTC, Le HTN et al (2019) MIL-53 (Fe)-directed synthesis of hierarchically mesoporous carbon and its utilization for ciprofloxacin antibiotic remediation. J Environ Chem Eng 7:102881. https://doi.org/10.1016/j.jece.2019.102881

    Article  CAS  Google Scholar 

  8. Nguyen TT, Bui XT, Luu VP et al (2017) Removal of antibiotics in sponge membrane bioreactors treating hospital wastewater: comparison between hollow fiber and flat sheet membrane systems. Bioresour Technol 240:42–49. https://doi.org/10.1016/j.biortech.2017.02.118

    Article  CAS  Google Scholar 

  9. Wajahat R, Yasar A, Khan AM et al (2019) Ozonation and photo-driven oxidation of ciprofloxacin in pharmaceutical wastewater: degradation kinetics and energy requirements. Pol J Environ Stud 28:1933–1938. https://doi.org/10.15244/pjoes/90597

    Article  Google Scholar 

  10. Tasca AL, Clematis D, Stefanelli E et al (2020) Ciprofloxacin removal: BDD anode coupled with solid polymer electrolyte and ultrasound irradiation. J Water Process Eng 33:101074. https://doi.org/10.1016/j.jwpe.2019.101074

    Article  Google Scholar 

  11. Chen F, Yang Q, Yao F et al (2017) Visible-light photocatalytic degradation of multiple antibiotics by AgI nanoparticle-sensitized Bi5O7I microspheres: enhanced interfacial charge transfer based on Z-scheme heterojunctions. J Catal 352:160–170. https://doi.org/10.1016/j.jcat.2017.04.032

    Article  CAS  Google Scholar 

  12. Hong Y, Li C, Zhang G et al (2016) Efficient and stable Nb2O5 modified g-C3N4 photocatalyst for removal of antibiotic pollutant. Chem Eng J 299:74–84. https://doi.org/10.1016/j.cej.2016.04.092

    Article  CAS  Google Scholar 

  13. Mohd Adnan MA, Muhd Julkapli N, Amir MNI, Maamor A (2019) Effect on different TiO 2 photocatalyst supports on photodecolorization of synthetic dyes: a review. Int J Environ Sci Technol 16:547–566. https://doi.org/10.1007/s13762-018-1857-x

    Article  CAS  Google Scholar 

  14. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52:3581–3599. https://doi.org/10.1021/ie303468t

    Article  CAS  Google Scholar 

  15. Wang H, Lewis JP (2006) Second-generation photocatalytic materials: anion-doped TiO2. J Phys Condens Matter 18:421–434. https://doi.org/10.1088/0953-8984/18/2/006

    Article  CAS  Google Scholar 

  16. Tan YN, Wong CL, Mohamed AR (2011) An overview on the photocatalytic activity of nano-doped- TiO2 in the degradation of organic pollutants. ISRN Mater Sci 2011:1–18. https://doi.org/10.5402/2011/261219

    Article  CAS  Google Scholar 

  17. Xiang Q, Yu J, Jaroniec M (2011) Nitrogen and sulfur co-doped TiO2 nanosheets with exposed 001 facets: Synthesis, characterization and visible-light photocatalytic activity. Phys Chem Chem Phys 13:4853–4861. https://doi.org/10.1039/c0cp01459a

    Article  CAS  Google Scholar 

  18. Rengifo-Herrera JA, Kiwi J, Pulgarin C (2009) N, S co-doped and N-doped Degussa P-25 powders with visible light response prepared by mechanical mixing of thiourea and urea. Reactivity towards E. coli inactivation and phenol oxidation. J Photochem Photobiol A Chem 205:109–115. https://doi.org/10.1016/j.jphotochem.2009.04.015

    Article  CAS  Google Scholar 

  19. Brindha A, Sivakumar T (2017) Visible active N, S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes. J Photochem Photobiol A Chem 340:146–156. https://doi.org/10.1016/j.jphotochem.2017.03.010

    Article  CAS  Google Scholar 

  20. Kamalakkannan J, Chandraboss VL, Prabha S, Senthilvelan S (2015) Activated carbon loaded N, S Co-doped TiO2 nanomaterial and its dye wastewater treatment. Int Lett Chem Phys Astron 47:147–164. https://doi.org/10.18052/www.scipress.com/ilcpa.47.147

    Article  CAS  Google Scholar 

  21. Noophum B, Sikong L, Kooptanond K (2013) Photocatalytic properties of nitrogen-sulfur co-doped TiO2 films coated on glass fiber. Adv Mater Res 781–784:2237–2240. https://doi.org/10.4028/www.scientific.net/AMR.781-784.2237

    Article  CAS  Google Scholar 

  22. Sathish M, Viswanath RP, Gopinath CS (2009) N, S-Co-doped TiO 2 nanophotocatalyst: Synthesis, electronic structure and photocatalysis. J Nanosci Nanotechnol 9:423–432. https://doi.org/10.1166/jnn.2009.J095

    Article  CAS  Google Scholar 

  23. Wei F, Ni L, Cui P (2008) Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity. J Hazard Mater 156:135–140. https://doi.org/10.1016/j.jhazmat.2007.12.018

    Article  CAS  Google Scholar 

  24. Asadi A, Akbarzadeh R, Eslami A et al (2019) Effect of synthesis method on NS-TiO2 photocatalytic performance. Energy Procedia 158:4542–4547. https://doi.org/10.1016/j.egypro.2019.01.756

    Article  CAS  Google Scholar 

  25. Todorova N, Vaimakis T, Petrakis D et al (2013) N and N, S-doped TiO2 photocatalysts and their activity in NOx oxidation. Catal Today 209:41–46. https://doi.org/10.1016/j.cattod.2012.11.019

    Article  CAS  Google Scholar 

  26. Yu J, Zhou M, Cheng B, Zhao X (2006) Preparation, characterization and photocatalytic activity of in situ N, S-codoped TiO2 powders. J Mol Catal A Chem 246:176–184. https://doi.org/10.1016/j.molcata.2005.10.034

    Article  CAS  Google Scholar 

  27. Durán-Álvarez JC, Avella E, Ramírez-Zamora RM, Zanella R (2016) Photocatalytic degradation of ciprofloxacin using mono- (Au, Ag and Cu) and bi- (Au-Ag and Au-Cu) metallic nanoparticles supported on TiO2 under UV-C and simulated sunlight. Catal Today 266:175–187. https://doi.org/10.1016/j.cattod.2015.07.033

    Article  CAS  Google Scholar 

  28. Kalantari K, Kalbasi M, Sohrabi M, Royaee SJ (2016) Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light. Ceram Int 42:14834–14842. https://doi.org/10.1016/j.ceramint.2016.06.117

    Article  CAS  Google Scholar 

  29. Xie W, Li R, Xu Q (2018) Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-27135-4

    Article  CAS  Google Scholar 

  30. Du J, Zhao G, Shi Y et al (2013) A facile method for synthesis of N-doped TiO 2 nanooctahedra, nanoparticles, and nanospheres and enhanced photocatalytic activity. Appl Surf Sci 273:278–286. https://doi.org/10.1016/j.apsusc.2013.02.032

    Article  CAS  Google Scholar 

  31. Wang H, Yang X, Xiong W, Zhang Z (2015) Photocatalytic reduction of nitroarenes to azo compounds over N-doped TiO2: relationship between catalysts and chemical reactivity. Res Chem Intermed 41:3981–3997. https://doi.org/10.1007/s11164-013-1504-6

    Article  CAS  Google Scholar 

  32. Gomes J, Lincho J, Domingues E et al (2019) N-TiO2 photocatalysts: a review of their characteristics and capacity for emerging contaminants removal. Water (Switzerland). https://doi.org/10.3390/w11020373

    Article  Google Scholar 

  33. Sun X, Liu H, Dong J et al (2010) Preparation and characterization of Ce/N-Codoped TiO2 particles for production of H2 by photocatalytic splitting water under visible light. Catal Lett 135:219–225. https://doi.org/10.1007/s10562-010-0302-7

    Article  CAS  Google Scholar 

  34. Charanpahari A, Umare SS, Sasikala R (2013) Effect of Ce, N and S multi-doping on the photocatalytic activity of TiO 2. Appl Surf Sci 282:408–414. https://doi.org/10.1016/j.apsusc.2013.05.144

    Article  CAS  Google Scholar 

  35. Ho W, Yu JC, Lee S (2006) Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. J Solid State Chem 179:1171–1176. https://doi.org/10.1016/j.jssc.2006.01.009

    Article  CAS  Google Scholar 

  36. Sano T, Mera N, Kanai Y et al (2012) Origin of visible-light activity of N-doped TiO2 photocatalyst: Behaviors of N and S atoms in a wet N-doping process. Appl Catal B Environ 128:77–83. https://doi.org/10.1016/j.apcatb.2012.06.034

    Article  CAS  Google Scholar 

  37. Bakar SA, Ribeiro C (2016) A comparative run for visible-light-driven photocatalytic activity of anionic and cationic S-doped TiO2 photocatalysts: a case study of possible sulfur doping through chemical protocol. J Mol Catal A Chem 421:1–15. https://doi.org/10.1016/j.molcata.2016.05.003

    Article  CAS  Google Scholar 

  38. Lettmann C, Hildenbrand K, Kisch H et al (2001) Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl Catal B Environ 32:215–227. https://doi.org/10.1016/S0926-3373(01)00141-2

    Article  CAS  Google Scholar 

  39. Abdullahi SS, Güner S, Koseoglu Y et al (2016) Simple method for the determination of band gap of a nanopowdered sample using Kubelka Munk theory. J Niger Assoc Math Phys 35:241–246

    Google Scholar 

  40. Gomez IJ, Arnaiz B, Cacioppo M et al (2018) Nitrogen-doped Carbon Nanodots for bioimaging and delivery of paclitaxel. J Mater Chem B. https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  41. Huang F, Yan A, Zhao H (2016) Influences of Doping on Photocatalytic Properties of TiO2 Photocatalyst. Semicond Photocatal Mater Mech Appl. https://doi.org/10.5772/63234

    Article  Google Scholar 

  42. Sharotri N, Sud D (2015) A greener approach to synthesize visible light responsive nanoporous S-doped TiO2 with enhanced photocatalytic activity. New J Chem 39:2217–2223. https://doi.org/10.1039/c4nj01422g

    Article  CAS  Google Scholar 

  43. Hassani A, Khataee A, Karaca S et al (2017) Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite. Ultrason Sonochem 35:251–262. https://doi.org/10.1016/j.ultsonch.2016.09.027

    Article  CAS  Google Scholar 

  44. Gad-Allah TA, Ali MEM, Badawy MI (2011) Photocatalytic oxidation of ciprofloxacin under simulated sunlight. J Hazard Mater 186:751–755. https://doi.org/10.1016/j.jhazmat.2010.11.066

    Article  CAS  Google Scholar 

  45. Hassani A, Khataee A, Karaca S (2015) Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: effect of operation parameters and artificial neural network modeling. J Mol Catal A Chem 409:149–161. https://doi.org/10.1016/j.molcata.2015.08.020

    Article  CAS  Google Scholar 

  46. Mostafaloo R, Asadi-Ghalhari M, Izanloo H, Zayadi A (2020) Photocatalytic degradation of ciprofloxacin antibiotic from aqueous solution by BiFeO3 nanocomposites using response surface methodology. Glob J Environ Sci Manag. https://doi.org/10.22034/gjesm.2020.02.05

    Article  Google Scholar 

  47. Zeng M (2013) Influence of TiO2 surface properties on water pollution treatment and photocatalytic activity. Bull Korean Chem Soc 34:953–956. https://doi.org/10.5012/bkcs.2013.34.3.953

    Article  CAS  Google Scholar 

  48. Xue Z, Wang T, Chen B et al (2015) Degradation of tetracycline with BiFeO3 prepared by a simple hydrothermal method. Materials (Basel) 8:6360–6378. https://doi.org/10.3390/ma8095310

    Article  CAS  Google Scholar 

  49. Rengifo-Herrera JA, Pulgarin C (2010) Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. Sol Energy 84:37–43. https://doi.org/10.1016/j.solener.2009.09.008

    Article  CAS  Google Scholar 

  50. Khataee A, Arefi-Oskoui S, Fathinia M et al (2015) Synthesis, characterization and photocatalytic properties of Er-doped PbSe nanoparticles as a visible light-activated photocatalyst. J Mol Catal A Chem 398:255–267. https://doi.org/10.1016/j.molcata.2014.11.009

    Article  CAS  Google Scholar 

  51. El-Kemary M, El-Shamy H, El-Mehasseb I (2010) Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. J Lumin 130:2327–2331. https://doi.org/10.1016/j.jlumin.2010.07.013

    Article  CAS  Google Scholar 

  52. Kaur A, Anderson WA, Tanvir S, Kansal SK (2019) Solar light active silver/iron oxide/zinc oxide heterostructure for photodegradation of ciprofloxacin, transformation products and antibacterial activity. J Colloid Interface Sci 557:236–253. https://doi.org/10.1016/j.jcis.2019.09.017

    Article  CAS  Google Scholar 

  53. Zhang H, Wang Z, Li R et al (2017) TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices. Chemosphere 185:351–360. https://doi.org/10.1016/j.chemosphere.2017.07.025

    Article  CAS  Google Scholar 

Download references

Funding

This work has been carried out with the financial support of the Vlaamse Interuniversitaire Raad—University Development Cooperation (VLIR-UOS), Belgium under Project VN2017TEA453 A101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khai Manh Nguyen.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, L.T., Nguyen, H.T., Pham, TD. et al. UV–Visible Light Driven Photocatalytic Degradation of Ciprofloxacin by N,S Co-doped TiO2: The Effect of Operational Parameters. Top Catal 63, 985–995 (2020). https://doi.org/10.1007/s11244-020-01319-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01319-7

Keywords

Navigation