Skip to main content
Log in

Synthesis and Characterization of Mn–Ce–VOx/TiO2 Nanocomposite for SCR of NOx at Low Temperatures: Role of Mn, Ce and V Oxide

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Mn–Ce–VOx/TiO2 (MnCeVTi), Mn–CeOx/TiO2 (MnCeTi) and Mn–VOx/TiO2 (MnVTi) nanocomposites as SCR DeNOx catalysts were synthesized by a modified sol–gel method. All catalysts shows high NOx conversion of over 90% at low temperature between 125 and 200 °C with GHSV of 30,000 h−1. MnCeVTi catalyst demonstrates the highest NOx conversion and produces the least byproduct N2O at 110–310 °C. The co-presence of Ce, V and Mn inhibits the growth of rutile, decreases crystallinity of anatase TiO2 and manganese oxides, reduces grain size, increases BET specific surface area and pore volume. There are most chemisorbed oxygen, appropriate Mn3+/Mn4+ and the synergistic effect of Ce and V on MnCeVTi sample. The acid sites on MnCeVTi are most below 280 °C and in widest temperature range. Lewis acid sites play a leading role in SCR reaction on MnCeVTi catalyst. These helps to optimize the SCR catalytic performance of MnCeVTi, on which E-R and L–H mechanism may coexist in the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pârvulescu VI, Grange P, Delmon B (1998) Catalytic removal of NO. Catal Today 46:233–316

    Google Scholar 

  2. Li J, Chang H, Ma L, Hao J, Yang RT (2011) Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review. Catal Today 175:147–156

    CAS  Google Scholar 

  3. Fu M, Li C, Lu P, Qu L, Zhang M, Zhou Y, Yu M, Fang Y (2014) A review on selective catalytic reduction of NOx by supported catalysts at 100–300 °C-catalysts, mechanism, kinetics. Catal Sci Technol 4:14–25

    CAS  Google Scholar 

  4. Nam KB, Kim DH, Hong SC (2019) Enhancement of Mn/Ce/W/Ti catalysts through control of pH and oxygen mobility during their preparation. Appl Catal A Gen 572:107–114

    CAS  Google Scholar 

  5. Liu X, Zhao Z, Ning R, Qin Y, Zhu T, Liu F (2019) Ce-doped V2O5-WO3/TiO2 with low vanadium loadings as SCR catalysts and the resistance of H2O and SO2. Catal Lett 150:375–383

    Google Scholar 

  6. Mytareva AI, Bokarev DA, Krivoruchenko DS, Baeva GN, Belyankin AY, Stakheev AY (2019) improvement of low-temperature activity of FeBeta monolith catalyst in NH3-SCR of NOx. Top Catal 62:86–92

    CAS  Google Scholar 

  7. Stanciulescu M, Caravaggio G, Dobri A, Moir J, Burich R, Charland JP, Bulsink P (2012) Low-temperature selective catalytic reduction of NOx with NH3 over Mn-containing catalysts. Appl Catal B: Environ 123–124:229–240

    Google Scholar 

  8. Song I, Youn S, Kim DH (2016) Characteristics of manganese supported on hydrous titanium oxide catalysts for the selective catalytic reduction of NOx with ammonia. Top Catal 59:1008–1012

    CAS  Google Scholar 

  9. Wu Z, Jin R, Liu Y, Wang H (2008) Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catal Commun 9:2217–2220

    CAS  Google Scholar 

  10. Wu Z, Jiang B, Liu Y (2008) Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia. Appl Catal B Environ 79:347–355

    CAS  Google Scholar 

  11. Zhao X, Mao L, Dong G (2018) Mn-Ce-V-WOx/TiO2 SCR catalysts: catalytic activity, stability and interaction among catalytic oxides. Catalysts 8:76–89

    Google Scholar 

  12. Wang F, Shen B, Zhu S, Wang Z (2019) Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance. Fuel 249:54–60

    CAS  Google Scholar 

  13. Niu Y, Shang T, Hui S, Zhang X, Lei Y, Lv Y, Wang S (2016) Synergistic removal of NO and N2O in low-temperature SCR process with MnOx/Ti based catalyst doped with Ce and V. Fuel 185:316–322

    CAS  Google Scholar 

  14. Gao C, Shi JW, Fan Z, Gao G, Niu C (2018) Sulfur and water resistance of Mn-based catalysts for low-temperature selective catalytic reduction of NOx: a review. Catalysts 8:11–39

    Google Scholar 

  15. Orsenigo C, Lietti L, Tronconi E, Forzatti P, Bregani F (1998) Dynamic investigation of the role of the surface sulfates in NOx reduction and SO2 oxidation over V2O5-WO3/TiO2 catalysts. Ind Eng Chem Res 37:2350–2359

    CAS  Google Scholar 

  16. Youn S, Jeong S, Kim DH (2014) Effect of oxidation states of vanadium precursor solution in V2O5/TiO2 catalysts for low temperature NH3 selective catalytic reduction. Catal Today 232:185–191

    CAS  Google Scholar 

  17. Wu Z, Jiang B, Liu Y, Zhao W, Guan B (2007) Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method. J Hazard Mater 145:488–494

    PubMed  CAS  Google Scholar 

  18. Xiong Y, Tang C, Yao X, Zhang L, Li L, Wang X, Deng Y, Gao F, Dong L (2015) Effect of metal ions doping (M = Ti4+, Sn4+ ) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Appl Catal A Gen 495:206–216

    CAS  Google Scholar 

  19. Qi G, Yang RT, Chang R (2004) MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B Environ 51:93–106

    CAS  Google Scholar 

  20. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemienewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    CAS  Google Scholar 

  21. Antolín AM, Contreras S, Medina F, Tichit D (2017) Silver/platinum supported on TiO2 P25 nanocatalysts for non-photocatalytic and photocatalytic denitration of water. Top Catal 60:1156–1170

    Google Scholar 

  22. Di Castro V, Polzonetti G (1989) XPS study of MnO oxidation. J Electron Spectrosc Relat Phenom 48:117–123

    Google Scholar 

  23. Nesbitt HW, Banerjee D (1998) Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am Mineral 83:305–315

    CAS  Google Scholar 

  24. Kapteijn F, Singoredjo L, Andreini A, Moulijn JA (1994) Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl Catal B Environ 3:173–189

    CAS  Google Scholar 

  25. Romeo M, Bak K, El Fallah J, Le Normand F, Hilaire L (1993) XPS Study of the reduction of cerium dioxide. Surf Interface Anal 20:508–512

    CAS  Google Scholar 

  26. Wang J, Miao J, Yu W, Chen Y, Chen J (2017) Study on the local difference of monolithic honeycomb V2O5-WO3/TiO2 denitration catalyst. Mater Chem Phys 198:193–199

    CAS  Google Scholar 

  27. Cha W, Ehrman SH, Jurng J (2016) Surface phenomenon of CeO2-added V2O5/TiO2 catalyst based chemical vapor condensation (CVC) for enhanced selective catalytic reduction at low temperatures. Chem Eng J 304:72–78

    CAS  Google Scholar 

  28. Liu F, Asakura K, He H, Shan W, Shi X, Zhang C (2011) Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3. Appl Catal B: Environ 103:369–377

    CAS  Google Scholar 

  29. Wang J, Ruan H, Li W, Li D, Hu Y, Chen J, Shao Y, Zheng Y (2012) Highly efficient oxidation of gaseous benzene on novel Ag3VO4/TiO2 nanocomposite photocatalysts under visible and simulated solar light irradiation. J Phys Chem C 116:13935–13943

    CAS  Google Scholar 

  30. Kruse N, Chenakin S (2011) XPS characterization of Au/TiO2 catalysts: binding energy assessment and irradiation effects. Appl Catal A : Gen 391:367–376

    CAS  Google Scholar 

  31. Michalow KA, Heel A, Vital A, Amberg M, Fortunato G, Kowalski K, Graule TJ, Rekas M (2009) Effect of thermal treatment on the photocatalytic activity in visible light of TiO2-W flame spray synthesized nanopowders. Top Catal 52:1051–1059

    CAS  Google Scholar 

  32. Yu Y, Chen C, Ma M, Douthwaite M, He C, Miao J, Chen J, Li C (2019) SO2 promoted in situ recovery of thermally deactivated Fe2(SO4)3/TiO2 NH3-SCR catalysts: from experimental work to theoretical study. Chem Eng J 361:820–829

    CAS  Google Scholar 

  33. Yu Y, Zhang J, Chen C, He C, Miao J, Li H, Chen J (2020) Effects of calcination temperature on physicochemical property and activity of CuSO4/TiO2 ammonia-selective catalytic reduction catalysts. J Environ Sci (China) 91:237–245

    Google Scholar 

  34. Lee K, Maqbool M, Pullur A, Jeong Y, Song K, Ha H (2015) Vanadia-modified Sb–CeO2/TiO2 catalyst for effective removal of NO by NH3. Res Chem Intermed 41:2635–2650

    CAS  Google Scholar 

  35. Yu YK, He C, Chen JS, Meng XR (2012) Deactivation mechanism of de-NOx catalyst (V2O5-WO3/TiO2) used in coal fired power plant. J Fuel Chem Technol 40:1359–1365

    CAS  Google Scholar 

  36. Liu F, Shan W, Lian Z, Liu J, He H (2018) The smart surface modification of Fe2O3 by WOx for significantly promoting the selective catalytic reduction of NOx with NH3. Appl Catal B Environ 230:165–176

    CAS  Google Scholar 

  37. Zhou M, Wang Z, Sun Q, Wang J, Zhang C, Chen D, Li X (2019) High-performance Ag-Cu nanoalloy catalyst for the selective catalytic oxidation of ammonia. ACS Appl Mater Interfaces 11:46875–46885

    PubMed  CAS  Google Scholar 

  38. Lin Y, Sun J, Li S, Wang D, Zhang C, Wang Z, Li X (2020) An efficient Pt/CeyCoOx composite metal oxide for catalytic oxidation of toluene. Catal Lett. https://doi.org/10.1007/s10562-020-03217-9

    Article  Google Scholar 

  39. Chen L, Liu G, Feng N, Yu J, Meng J, Fang F, Zhao P, Wang L, Wan H, Guan G (2019) Effect of calcination temperature on structural properties and catalytic soot combustion activity of MnOx/wire-mesh monoliths. Appl Surf Sci 467–468:1088–1103

    Google Scholar 

  40. Wang H, Chen H, Wang Y, Lyu Y-K (2019) Performance and mechanism comparison of manganese oxides at different valence states for catalytic oxidation of NO. Chem Eng J 361:1161–1172

    CAS  Google Scholar 

  41. Zhao B, Ran R, Guo X, Cao L, Xu T, Chen Z, Wu X, Si Z, Weng D (2017) Nb-modified Mn/Ce/Ti catalyst for the selective catalytic reduction of NO with NH3 at low temperature. Appl Catal A : Gen 545:64–71

    CAS  Google Scholar 

  42. Xu Q, Su R, Cao L, Li Y, Yang C, Luo Y, Street J, Jiao P, Cai L (2017) Facile preparation of high-performance Fe-doped Ce–Mn/TiO2 catalysts for the low-temperature selective catalytic reduction of NOx with NH3. RSC Adv 7:48785–48792

    CAS  Google Scholar 

  43. Wang Z, Sun Q, Wang D, Hong Z, Qu Z, Li X (2019) Hollow ZSM-5 zeolite encapsulated Ag nanoparticles for SO2-resistant selective catalytic oxidation of ammonia to nitrogen. Sep Purif Technol 209:1016–1026

    CAS  Google Scholar 

  44. Yang S, Xiong S, Liao Y, Xiao X, Qi F, Peng Y, Fu Y, Shan W, Li J (2014) Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel. Environ Sci Technol 48:10354–10362

    PubMed  CAS  Google Scholar 

  45. Chmielarz L, Kuśtrowski P, Zbroja M, Łasocha W, Dziembaj R (2004) Selective reduction of NO with NH3 over pillared clays modified with transition metals. Catal Today 90:43–49

    CAS  Google Scholar 

  46. Larrubia MA, Ramis G, Busca G (2000) An FT-IR study of the adsorption of urea and ammonia over V2O5–MoO3–TiO2 SCR catalysts. Appl Catal B: Environ 27:145–151

    Google Scholar 

  47. Long RQ, Yang RT (2000) Characterization of Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia. J Catal 194:80–90

    CAS  Google Scholar 

  48. Yu Y, Wang J, Chen J, Meng X, Chen Y, He C (2014) Promotive effect of SO2 on the activity of a deactivated commercial selective catalytic reduction catalyst: an in situ DRIFT study. Ind Eng Chem Res 53:16229–16234

    CAS  Google Scholar 

  49. Topsoe NY, Topsoe H, Dumesic JA (1995) Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia: combined temperature programmed in situ FTIR and on-line mass spectroscopy studies. J Catal 151:226–240

    CAS  Google Scholar 

  50. Vuong TH, Radnik J, Rabeah J, Bentrup U, Schneider M, Atia H, Armbruster U, Grünert W, Brückner A (2017) Efficient VOx/Ce1–xTixO2 catalysts for low-temperature NH3-SCR: reaction mechanism and active sites assessed by in situ/operando spectroscopy. ACS Catal 7:1693–1705

    CAS  Google Scholar 

  51. Machida M, Uto M, Kurogi D, Kijima T (2000) MnOx−CeO2 binary oxides for catalytic NOx sorption at low temperatures. sorptive removal of NOx. Chem Mater 12:3158–3164

    CAS  Google Scholar 

  52. Chen L, Li J, Ge M (2010) DRIFT Study on cerium−tungsten/titiania catalyst for selective catalytic reduction of NOx with NH3. Environ Sci Technol 44:9590–9596

    PubMed  CAS  Google Scholar 

  53. Zhao L, Li X, Hao C, Raston CL (2012) SO2 adsorption and transformation on calcined NiAl hydrotalcite-like compounds surfaces: an in situ FTIR and DFT study. Appl Catal B Environ 117–118:339–345

    Google Scholar 

Download references

Acknowledgement

This work is financially supported by National Natural Science Foundation of China [Grant Number 21403210] and by Youth Innovation Promotion Association, Chinese Academy of Sciences [2020309]. Authors also acknowledge CSIRO Manufacturing for part of financial support of this work. J. Wang acknowledges the scholarship from China Scholarship Council (CSC) visiting scholar program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinsheng Chen or Zongli Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yi, X., Ng, D. et al. Synthesis and Characterization of Mn–Ce–VOx/TiO2 Nanocomposite for SCR of NOx at Low Temperatures: Role of Mn, Ce and V Oxide. Top Catal 63, 913–923 (2020). https://doi.org/10.1007/s11244-020-01315-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01315-x

Keywords

Navigation