Skip to main content
Log in

Absence of logarithmic divergence of the entanglement entropies at the phase transitions of a 2D classical hard rod model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Entanglement entropy is a powerful tool to detect continuous, discontinuous and even topological phase transitions in quantum as well as classical systems. In this work, von Neumann and Renyi entanglement entropies are studied numerically for classical lattice models in a square geometry. A cut is made from the center of the square to the midpoint of one of its edges, say the right edge. The entanglement entropies measure the entanglement between the left and right halves of the system. As in the strip geometry, von Neumann and Renyi entanglement entropies diverge logarithmically at the transition point while they display a jump for first-order phase transitions. The analysis is extended to a classical model of non-overlapping finite hard rods deposited on a square lattice for which Monte Carlo simulations have shown that, when the hard rods span over 7 or more lattice sites, a nematic phase appears in the phase diagram between two disordered phases. A new Corner Transfer Matrix Renormalization Group algorithm (CTMRG) is introduced to study this model. No logarithmic divergence of entanglement entropies is observed at the phase transitions in the CTMRG calculation discussed here. We therefore infer that the transitions neither can belong to the Ising universality class, as previously assumed in the literature, nor be discontinuous.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.J. Gu, S.S. Deng, Y.Q. Li, H.Q. Lin, Phys. Rev. Lett. 93, 086402 (2004)

    Article  ADS  Google Scholar 

  2. Y. Chen, P. Zanardi, Z.D. Wang, F.C. Zhang, New J. Phys. 8, 97 (2006)

    Article  ADS  Google Scholar 

  3. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  Google Scholar 

  4. P. Calabrese, J. Cardy, J. Phys. A: Math. Theor. 42, 504005 (2009)

    Article  Google Scholar 

  5. P. Lajkó, F. Iglói, Phys. Rev. E 95, 012105 (2017)

    Article  ADS  Google Scholar 

  6. E. Fradkin, L. Susskind, Phys. Rev. D 17, 2637 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  7. H.F. Trotter, J. Math. 8, 887 (1958)

    Google Scholar 

  8. M. Suzuki, J. Phys. Soc. Jpn. 21, 2274 (1966)

    Article  ADS  Google Scholar 

  9. M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976)

    Article  ADS  Google Scholar 

  10. H. Ueda, K. Okunishi, R. Krcmar, A. Gendiar, S. Yunoki, T. Nishino, Phys. Rev. E 96, 062112 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. C. Chatelain, J. Stat. Mech. 2016, 073306 (2016)

    Article  Google Scholar 

  12. H. Ueda, K. Okunishi, K. Harada, R. Krcmar, A. Gendiar, S. Yunoki, T. Nishino, https://arXiv:2001.10176 (2020)

  13. R. Krcmar, A. Gendiar, T. Nishino, https://arXiv:2003.10718 (2020), accepted in Acta Phys. Pol. A

  14. R.H. Fowler, G.S. Rushbrooke, Trans. Faraday Soc. 33, 1272 (1937)

    Article  Google Scholar 

  15. R. Kenyon, https://arXiv:math/0310326 (2003)

  16. R. Kenyon, https://arXiv:0910.3129 (2009)

  17. M.E. Fisher, Phys. Rev. 124, 1664 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  18. P.W. Kasteleyn, Physica 27, 1209 (1961)

    Article  ADS  Google Scholar 

  19. O.J. Heilmann, E.H. Lieb, Phys. Rev. Lett. 24, 1412 (1970)

    Article  ADS  Google Scholar 

  20. O.J. Heilmann, E.H. Lieb, Commun. Math. Phys. 25, 190 (1972)

    Article  ADS  Google Scholar 

  21. A. Ghosh, D. Dhar J.L. Jacobsen, Phys. Rev. E 75, 011115 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. F. Alet, J.L. Jacobsen, G. Misguich, V. Pasquier, F. Mila, M. Troyer, Phys. Rev. Lett. 94, 235702 (2005)

    Article  ADS  Google Scholar 

  23. F. Alet, Y. Ikhlef, J.L. Jacobsen, G. Misguich, V. Pasquier, Phys. Rev. E 74, 041124 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  24. L. Onsager, Annal. New York Acad. Sci. 51, 627 (1949)

    Article  ADS  Google Scholar 

  25. D. Frenkel, Physica A 263, 26 (1999)

    Article  ADS  Google Scholar 

  26. R. Zwanzig, J. Chem. Phys. 39, 1714 (1963)

    Article  ADS  Google Scholar 

  27. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  28. J.P. Straley, Phys. Rev. A 4, 675 (1971)

    Article  ADS  Google Scholar 

  29. D. Frenkel, R. Eppenga, Phys. Rev. A 31, 1776 (1985)

    Article  ADS  Google Scholar 

  30. I. Peschel, M. Kaulke, Ö. Legeza, Ann. Physik (Leipzig) 8, 153 (1999)

    Article  ADS  Google Scholar 

  31. A. Ghosh, D. Dhar, Europhys. Lett. 78, 20003 (2007)

    Article  ADS  Google Scholar 

  32. D.A. Matoz-Fernandez, D.H. Linares, A.J. Ramirez-Pastor, Europhys. Lett. 82, 50007 (2008)

    Article  ADS  Google Scholar 

  33. D.A. Matoz-Fernandez, D.H. Linares, A.J. Ramirez-Pastor, Physica A 387, 6513 (2008)

    Article  ADS  Google Scholar 

  34. D.A. Matoz-Fernandez, D.H. Linares, A.J. Ramirez-Pastor, J. Chem. Phys. 128, 214902 (2008)

    Article  ADS  Google Scholar 

  35. D.H. Linares, F. Roma, A.J. Ramirez-Pastor, J. Stat. Mech. 2008, P03013 (2008)

    Article  Google Scholar 

  36. T. Fischer, R.L.C. Vink, Europhys. Lett. 85, 56003 (2009)

    Article  ADS  Google Scholar 

  37. J. Kundu, R. Rajesh, D. Dhar, J.F. Stilck, Phys. Rev. E 87, 032103 (2013)

    Article  ADS  Google Scholar 

  38. R.J. Baxter, J. Math. Phys. 9, 650 (1968)

    Article  ADS  Google Scholar 

  39. S.R. White, Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  40. S.R. White, Phys. Rev. B 14, 10345 (1993)

    Article  ADS  Google Scholar 

  41. U. Schollwoeck, Rev. Mod. Phys. 77, 259 (2005)

    Article  ADS  Google Scholar 

  42. U. Schollwoeck, Ann. Phys. 1, 96 (2011)

    Article  ADS  Google Scholar 

  43. T. Nishino, K. Okunishi, J. Phys. Soc. Japan 4, 891 (1996)

    Article  ADS  Google Scholar 

  44. R.J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic Press, New York, 1982)

  45. F. Verstraete, J.I. Cirac, https://arXiv:cond-mat/0505140 (2005)

  46. N. Schuch, M.M. Wolf, F. Verstraete, J.I. Cirac, https://arXiv:0705.0292 (2007)

  47. F. Pollmann, S. Mukerjee, A. Turner, J.E. Moore, Phys. Rev. Lett. 102, 255701 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Chatelain.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatelain, C., Gendiar, A. Absence of logarithmic divergence of the entanglement entropies at the phase transitions of a 2D classical hard rod model. Eur. Phys. J. B 93, 134 (2020). https://doi.org/10.1140/epjb/e2020-10059-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10059-8

Keywords

Navigation