Skip to main content
Log in

The structural, electronic and optic properties in a series of M2XY (M = Ga, In; X,Y = S, Se, Te) Janus monolayer materials based on GW and the Bethe-Salpeter equation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Utilizing first-principles calculations, we have investigated the structural, electronic, and optic properties of a series of two-dimensional (2D) stable direct band-gap semiconductors, which are M2XY (M = Ga, In; X,Y = S, Se, Te) in group-III-V with the Janus single layer structures. Meanwhile, the MX (M = Ga, In; X = S, Se, Te) of binary single layer structures, which are parent materials for Janus structures, have also been investigated. The electronic structures are calculated via GW0 self-consistency, and the results show that these Janus monolayer structures belong to the direct band-gap semiconductors with large band gap. In contrast to the indirect band-gap MX monolayers, it indicates that an indirect-direct band-gap transition can be realized by constructing Janus structures. Moreover, we systematically investigated the optic response properties of M2XY Janus single layers by solving the Bethe-Salpeter equation (BSE), and the exciton absorption peaks are observed in these monolayer structures. Our results show that these Janus structure materials should be potential candidates for optoelectronic nanodevices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    ADS  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    ADS  Google Scholar 

  3. Y. Zhao, S. Zeng, J. Ni, Phys. Rev. B 93, 014502 (2016)

    ADS  Google Scholar 

  4. A.J. Mannix, X.F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest et al., Science 350, 1513 (2015)

    ADS  Google Scholar 

  5. M. Wu, H. Fu, L. Zhou, K. Yao, X.C. Zeng, Nano Lett. 15, 3557 (2015)

    ADS  Google Scholar 

  6. J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, Nat. Commun. 5, 4475 (2014)

    ADS  Google Scholar 

  7. R.A. Gordon, D. Yang, E.D. Crozier, D.T. Jiang, R.F. Frindt, Phys. Rev. B 65, 125407 (2002)

    ADS  Google Scholar 

  8. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    ADS  Google Scholar 

  9. J.N. Coleman, M. Lotya, A. ONeill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith et al., Science 331, 568 (2011)

    ADS  Google Scholar 

  10. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)

    ADS  Google Scholar 

  11. H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, F.M. Peeters, Phys. Rev. B 87, 165409 (2013)

    ADS  Google Scholar 

  12. D.Y. Qiu, F.H. da Jornada, S.G. Louie, Phys. Rev. Lett. 111, 216805 (2013)

    ADS  Google Scholar 

  13. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011)

    ADS  Google Scholar 

  14. W.S. Yun, S.W. Han, S.C. Hong, I.G. Kim, J.D. Lee, Phys. Rev. B 85, 033305 (2012)

    ADS  Google Scholar 

  15. Y. Xie, B. Zhang, S. Wang, D. Wang, A. Wang, Z. Wang, H. Yu, H. Zhang, Y. Chen, M. Zhao et al., Adv. Mater. 29, 1605972 (2016)

    Google Scholar 

  16. M. Yagmurcukardes, R. Senger, F. Peeters, H. Sahin, Phys. Rev. B 94, 245407 (2016)

    ADS  Google Scholar 

  17. V. Podzorov, V. Pudalov, M. Gershenson, Appl. Phys. Lett. 82, 1739 (2003)

    ADS  Google Scholar 

  18. T. Nishino, Y. Hamakawa, Jpn. J. Appl. Phys. 16, 1291 (1977)

    ADS  Google Scholar 

  19. A. Yamamoto, A. Syouji, T. Goto, E. Kulatov, K. Ohno, Y. Kawazoe, K. Uchida, N. Miura, Phys. Rev. B 64, 035210 (2001)

    ADS  Google Scholar 

  20. R. Damon, R. Redington, Phys. Rev. 96, 1498 (1954)

    ADS  Google Scholar 

  21. S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai et al., ACS Nano 8, 1263 (2014)

    Google Scholar 

  22. D.A. Bandurin, A.V. Tyurnina, L.Y. Geliang, A. Mishchenko, V. Zólyomi, S.V. Morozov, R.K. Kumar, R.V. Gorbachev, Z.R. Kudrynskyi, S. Pezzini et al., Nat. Nanotechnol. 12, 223 (2017)

    ADS  Google Scholar 

  23. M. Brotons-Gisbert, D. Andres-Penares, J. Martínez-Pastor, A. Cros, J. Sánchez-Royo, Nanotechnology 28, 115706 (2017)

    ADS  Google Scholar 

  24. H.L. Zhuang, R.G. Hennig, Chem. Mater. 25, 3232 (2013)

    Google Scholar 

  25. A.S. Nissimagoudar, J. Ma, Y. Chen, W. Li, J. Phys.: Condens. Matter 29, 335702 (2017)

    Google Scholar 

  26. J. Martínez-Pastor, A. Segura, J. Valdes, A. Chevy, J. Appl. Phys. 62, 1477 (1987)

    ADS  Google Scholar 

  27. Z. Yang, W. Jie, C.H. Mak, S. Lin, H. Lin, X. Yang, F. Yan, S.P. Lau, J. Hao, ACS Nano 11, 4225 (2017)

    Google Scholar 

  28. D.J. Late, B. Liu, H.S.S.R. Matte, C.N.R. Rao, V.P. Dravid, Adv. Funct. Mater. 22, 1894 (2011)

    Google Scholar 

  29. G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper et al., ACS Nano 9, 11509 (2015)

    Google Scholar 

  30. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutirrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach et al., ACS Nano 7, 2898 (2013)

    Google Scholar 

  31. Y. Cheng, Z. Zhu, M. Tahir, U. Schwingenschlögl, Europhys. Lett. 102, 57001 (2013)

    ADS  Google Scholar 

  32. A.Y. Lu, H. Zhu, J. Xiao, C.P. Chuu, Y. Han, M.H. Chiu, C.C. Cheng, C.W. Yang, K.H. Wei, Y. Yang et al., Nat. Nanotechnol. 12, 744 (2017)

    Google Scholar 

  33. J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V.B. Shenoy, L. Shi et al., ACS Nano 11, 8192 (2017)

    Google Scholar 

  34. A. Kandemir, H. Sahin, Phys. Rev. B 97, 155410 (2018)

    ADS  Google Scholar 

  35. G. Kresse, J. Furthmller, Comput. Mater. Sci. 6, 15 (1996)

    Google Scholar 

  36. A. Togo, F. Oba, I. Tanaka, Phys. Rev. B 78, 134106 (2008)

    ADS  Google Scholar 

  37. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  38. S. Grimme, J. Comput. Chem. 27, 1787 (2006)

    Google Scholar 

  39. F. Giustino, M.L. Cohen, S.G. Louie, Phys. Rev. B 76, 165108 (2007)

    ADS  Google Scholar 

  40. A. Togo, F. Oba, I. Tanaka, Phys. Rev. B 78, 134106 (2008)

    ADS  Google Scholar 

  41. W. Wei, Y. Dai, C. Niu, X. Li, Y. Ma, B. Huang, J. Mater. Chem. C 3, 11548 (2015)

    Google Scholar 

  42. D.J. Late, B. Liu, J. Luo, A. Yan, H.S.S.R. Matte, M. Grayson, C.N.R. Rao, V.P. Dravid, Adv. Mater. 24, 3549 (2012)

    Google Scholar 

  43. M. Piacentini, C. Olson, A. Balzarotti, R. Girlanda, V. Grasso, E. Doni, Il Nuovo Cimento B 54, 248 (1979)

    Google Scholar 

  44. P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J.C. Idrobo, Y. Miyamoto, D.B. Geohegan et al., Nano Lett. 13, 1649 (2013)

    ADS  Google Scholar 

  45. P. Hu, Z. Wen, L. Wang, P. Tan, K. Xiao, ACS Nano 6, 5988 (2012)

    Google Scholar 

  46. L. Matthes, O. Pulci, F. Bechstedt, Phys. Rev. B 94, 205408 (2016)

    ADS  Google Scholar 

  47. I. Guilhon, M. Marques, L.K. Teles, M. Palummo, O. Pulci, S. Botti, F. Bechstedt, Phys. Rev. B 99, 161201 (2019)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhong Dai.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yang, X., Dai, Z. et al. The structural, electronic and optic properties in a series of M2XY (M = Ga, In; X,Y = S, Se, Te) Janus monolayer materials based on GW and the Bethe-Salpeter equation. Eur. Phys. J. B 93, 137 (2020). https://doi.org/10.1140/epjb/e2020-100408-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100408-0

Keywords

Navigation