Skip to main content
Log in

Tunable Terahertz Dielectric Resonator Antenna

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

An annular dielectric resonator (DR) antenna (DRA) is implemented for THz applications. A silicon made DR is loaded with graphene disk for obtaining the tunability in the frequency response. The physical parameters of silicon annular DR can be set to obtain the resonance at any frequency in the lower THz band and can be tuned by changing the chemical potential of graphene nano-disk placed at the top of the DR. The response of antenna is preserved after changing the chemical potential of graphene. The higher order hybrid electromagnetic mode is excited in the antenna structure. The proposed research work provides a way to implement the antenna for THz frequency with high gain around 3.8 dBi and radiation efficiency in the range 72 − 75%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akyildiz IF, Jornet JM, Han C (2014) Terahertz band: next frontier for wireless communications. Phys Commun 12:16–32. https://doi.org/10.1016/j.phycom.2014.01.006

    Article  Google Scholar 

  2. Varshney G, Gotra S, Kaur J, Pandey VS, Yaduvanshi RS (2019) Obtaining the circular polarization in a nano-dielectric resonator antenna for photonics applications. Semicond Sci Technol 34(7):07LT01. https://doi.org/10.1088/1361-6641/ab1fd1

    Article  CAS  Google Scholar 

  3. Varshney G (2020) Ultra-wideband antenna using graphite disk resonator for THz. Superlattices Microstruct. https://doi.org/10.1016/j.spmi.2020.106480

  4. Singhal S (2019) Ultrawideband elliptical microstrip antenna for terahertz applications. Microw Opt Technol Lett 61(10):2366–2373. https://doi.org/10.1002/mop.31910

    Article  Google Scholar 

  5. Singhal S (2019) Elliptical ring terahertz fractal antenna. Optik (Stuttg) 194(May):163129. https://doi.org/10.1016/j.ijleo.2019.163129

    Article  CAS  Google Scholar 

  6. Sharma A, Singh G (2009) Rectangular microstirp patch antenna design at THz frequency for short distance wireless communication systems. J Infrared Millimeter Terahertz Waves 30(1):1–7. https://doi.org/10.1007/s10762-008-9416-z

    Article  CAS  Google Scholar 

  7. Sadeghzadeh RA, Zarrabi FB (2016) Metamaterial Fabry-Perot cavity implementation for gain and bandwidth enhancement of THz dipole antenna. Optik (Stuttg) 127(13):5181–5185. https://doi.org/10.1016/j.ijleo.2016.02.072

    Article  CAS  Google Scholar 

  8. Denizhan Sirmaci Y, Akin CK, Sabah C (2016) Fishnet based metamaterial loaded THz patch antenna. Opt Quant Electron 48(2):1–10. https://doi.org/10.1007/s11082-016-0449-6

    Article  Google Scholar 

  9. Poorgholam-Khanjari S, Zarrabi FB, Jarchi S (2020) Compact and wide-band Quasi Yagi-Uda antenna based on periodic grating ground and coupling method in terahertz regime. Optik (Stuttg) 203(December 2019):163990. https://doi.org/10.1016/j.ijleo.2019.163990

    Article  CAS  Google Scholar 

  10. Nejati A, Sadeghzadeh RA, Geran F (2014) Effect of photonic crystal and frequency selective surface implementation on gain enhancement in the microstrip patch antenna at terahertz frequency. Phys B Condens Matter 449:113–120. https://doi.org/10.1016/j.physb.2014.05.014

    Article  CAS  Google Scholar 

  11. Malheiros-Silveira GN, Wiederhecker GS, Hernández-Figueroa HE (2013) Dielectric resonator antenna for applications in nanophotonics. Opt Express 21(1):1234. https://doi.org/10.1364/oe.21.001234

    Article  CAS  PubMed  Google Scholar 

  12. Naghdehforushha SA, Moradi G (2018) High directivity plasmonic graphene-based patch array antennas with tunable THz band communications. Optik (Stuttg) 168:440–445. https://doi.org/10.1016/j.ijleo.2018.04.104

    Article  CAS  Google Scholar 

  13. Naghdehforushha SA, Moradi G (2018) Plasmonic patch antenna based on graphene with tunable terahertz band communications. Optik (Stuttg) 158:617–622. https://doi.org/10.1016/j.ijleo.2017.12.088

    Article  CAS  Google Scholar 

  14. Dong Y, Liu P, Yu D, Li G, Tao F (2016) Dual-band reconfigurable terahertz patch antenna with graphene-stack-based backing cavity. IEEE Antennas Wirel Propag Lett 15:1541–1544. https://doi.org/10.1109/LAWP.2016.2533018

    Article  Google Scholar 

  15. Varshney G, Verma A, Pandey VS, Yaduvanshi RS, Bala R (2018) A proximity coupleld wideband graphene antenna with the generation of higher order TM modes for THz application. Opt Mater. Elsevier, 85:456–463

  16. Naghdehforushha SA, Moradi G (2019) An improved method to null-fill H-plane radiation pattern of graphene patch THz antenna utilizing branch feeding microstrip line. Optik (Stuttg) 181(November 2018):21–27. https://doi.org/10.1016/j.ijleo.2018.11.155

    Article  CAS  Google Scholar 

  17. Kiani N, Tavakkol Hamedani F, Rezaei P, Jafari Chashmi M, Danaie M (2020) Polarization controling approach in reconfigurable microstrip graphene-based antenna. Optik (Stuttg) 203(September 2019):163942. https://doi.org/10.1016/j.ijleo.2019.163942

    Article  CAS  Google Scholar 

  18. Jafari Chashmi M, Rezaei P, Kiani N (2020) Y-shaped graphene-based antenna with switchable circular polarization. Optik (Stuttg) 200(August 2019):163321. https://doi.org/10.1016/j.ijleo.2019.163321

    Article  CAS  Google Scholar 

  19. Varshney G, Gotra S, Pandey VS, Yaduvanshi RS (2019) Proximity-coupled two-port multi-input-multi-output graphene antenna with pattern diversity for THz applications. Nano Commun Netw 21:100246. https://doi.org/10.1016/j.nancom.2019.05.003

    Article  Google Scholar 

  20. Varshney G (2020) Reconfigurable graphene antenna for THz applications: a mode conversion approach. Nanotechnology 31(13):135208. https://doi.org/10.1088/1361-6528/ab60cc

    Article  CAS  PubMed  Google Scholar 

  21. Naghdehforushha SA, Moradi G (2019) High radiation efficiency of coupled plasmonic graphene-based THz patch antenna utilizing strip slot ground plane removal. Optik (Stuttg) 182:1082–1087. https://doi.org/10.1016/j.ijleo.2019.01.099

    Article  CAS  Google Scholar 

  22. Bala R, Marwaha A (2016) Characterization of graphene for performance enhancement of patch antenna in THz region. Optik (Stuttg). 127(4):2089–2093. https://doi.org/10.1016/j.ijleo.2015.11.029

    Article  CAS  Google Scholar 

  23. Chashmi MJ, Rezaei P, Kiani N (2019) Reconfigurable graphene-based V-shaped dipole antenna: From quasi-isotropic to directional radiation pattern. Optik (Stuttg) 184(February):421–427. https://doi.org/10.1016/j.ijleo.2019.04.125

    Article  CAS  Google Scholar 

  24. Hosseininejad SE et al (2018) Terahertz dielectric resonator antenna coupled to graphene plasmonic dipole. EuCAP. https://doi.org/10.1049/cp.2018.1041

    Chapter  Google Scholar 

  25. Nickpay MR, Danaie M, Shahzadi A (2019) Wideband rectangular double-ring nanoribbon graphene-based antenna for terahertz communications. IETE J Res:1–10. https://doi.org/10.1080/03772063.2019.1661801

  26. Naghdehforushha SA, Moradi G (2018) Design of plasmonic rectangular ribbon antenna based on graphene for terahertz band communication. IET Microwaves Antennas Propag 12(5):804–807. https://doi.org/10.1049/iet-map.2017.0678

    Article  Google Scholar 

  27. Sharma T, Varshney G, Vashishath RSYM (2020) Obtaining the tunable band-notch in ultrawideband THz antenna using graphene nanoribbons. Opt Eng 59(4):047103–1–047103–11. https://doi.org/10.1117/1.OE.59.4.047103

    Article  Google Scholar 

  28. Novin SN, Zarrabi FB, Bazgir M, Heydari S, Ebrahimi S (2019) Field enhancement in metamaterial split ring resonator aperture nano-antenna with spherical nano-particle arrangement. Silicon 11(1):293–300. https://doi.org/10.1007/s12633-018-9854-8

    Article  CAS  Google Scholar 

  29. Cheng X, Yao Y, Qu S-W, Wu Y, Yu J, Chen X (2016) Circular beam-reconfigurable antenna base on graphene-metal hybrid circular beam-reconfigurable antenna base on graphene-metal hybrid. Electron Lett 52(7):494–496. https://doi.org/10.1021/nl803316h

    Article  CAS  Google Scholar 

  30. Amanatiadis SA, Karamanos TD, Kantartzis NV (2017) Radiation efficiency enhancement of graphene THz antennas utilizing metamaterial substrates. IEEE Antennas Wirel Propag Lett 16:2054–2057. https://doi.org/10.1109/LAWP.2017.2695521

    Article  Google Scholar 

  31. Zarrabi FB, Seyedsharbaty MM, Ahmed Z, Arezoomand AS, Heydari S (2017) Wide band yagi antenna for terahertz application with graphene control. Optik (Stuttg) 140:866–872. https://doi.org/10.1016/j.ijleo.2017.05.009

    Article  CAS  Google Scholar 

  32. Seyedsharbaty MM, Sadeghzadeh RA (2017) Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load. Opt Quant Electron 49(6):1–13. https://doi.org/10.1007/s11082-017-1052-1

    Article  Google Scholar 

  33. Kazemi F (2020) Dual band compact fractal THz antenna based on CRLH-TL and graphene loads. Optik (Stuttg) 206(December 2019):164369. https://doi.org/10.1016/j.ijleo.2020.164369

    Article  CAS  Google Scholar 

  34. Samanta G, Mitra D (2018) Wideband THz antenna using graphene based tunable circular reactive impedance substrate. Optik (Stuttg) 158:1080–1087. https://doi.org/10.1016/j.ijleo.2017.12.197

    Article  CAS  Google Scholar 

  35. Walther M, Cooke DG, Sherstan C, Hajar M, Freeman MR, Hegmann FA (2007) Terahertz conductivity of thin gold films at the metal-insulator percolation transition. Phys Rev B Condens Matter Mater Phys 76(12):1–9. https://doi.org/10.1103/PhysRevB.76.125408

    Article  CAS  Google Scholar 

  36. Chen J-X, Shi J, Bao Z-H, Xue Q (2011) Tunable and switchable bandpass filters using slot-line resonators. Prog Electromagn Res 111:25–41. https://doi.org/10.2528/Pier10100808

    Article  Google Scholar 

  37. Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10):630–634. https://doi.org/10.1038/nnano.2011.146

    Article  CAS  PubMed  Google Scholar 

  38. Khan M, Tahir MN, Adil SF, Khan HU, Siddiqui MRH, al-warthan AA, Tremel W (2015) Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J Mater Chem A 3(37):18753–18808. https://doi.org/10.1039/c5ta02240a

    Article  CAS  Google Scholar 

  39. Sensale-rodriguez B, Member S, Yan R, Jena D, Xing HG (2013) Graphene for reconfigurable THz optoelectronics. Proc IEEE 101(7):1705–1716

    Article  CAS  Google Scholar 

  40. Wang R, Ren XG, Yan Z, Jiang LJ, Sha WEI, Shan GC (2019) Graphene based functional devices: a short review. Front Phys 14(1). https://doi.org/10.1007/s11467-018-0859-y

  41. Gale JD et al (2012) The rise of graphene. Rev Mod Phys 58(1):710–734. https://doi.org/10.1016/j.jmps.2010.02.008

    Article  CAS  Google Scholar 

  42. Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8(2):1086–1101. https://doi.org/10.1021/nn406627u

    Article  CAS  PubMed  Google Scholar 

  43. Ghorbanzadeh Ahangari M, Salmankhani A, Imani AH, Shahab N, Hamed Mashhadzadeh A (2019) Density functional theory study on the mechanical properties and interlayer interactions of multi-layer graphene: carbonic, silicon-carbide and silicene graphene-like structures. Silicon 11(3):1235–1246. https://doi.org/10.1007/s12633-018-9885-1

    Article  CAS  Google Scholar 

  44. Gomez-Diaz JS, Moldovan C, Capdevila S, Romeu J, Bernard LS, Magrez A, Ionescu AM, Perruisseau-Carrier J (2015) Self-biased reconfigurable graphene stacks for terahertz plasmonics. Nat Commun 6:1–8. https://doi.org/10.1038/ncomms7334

    Article  CAS  Google Scholar 

  45. Verma A, Prakash A, Tripathi R (2017) Comparative study of a surface plasmon resonance biosensor based on metamaterial and graphene. Silicon 9(3):309–320. https://doi.org/10.1007/s12633-016-9455-3

    Article  CAS  Google Scholar 

  46. Varshney G, Pandey VS, Yaduvanshi RS (2018) Axial ratio bandwidth enhancement of a circularly polarized rectangular dielectric resonator antenna. Int J Microw Wirel Technol 10(8):984–990. https://doi.org/10.1017/s1759078718000764

    Article  Google Scholar 

  47. Gotra S, Varshney G, Pandey VS, Yaduvanshi RS (2019) Super-wideband multi-input–multi-output dielectric resonator antenna. IET Microwaves Antennas Propag 14(1):21–27. https://doi.org/10.1016/j.jallcom.2008.03.118

    Article  CAS  Google Scholar 

  48. Withayachumnankul W et al (2013) Dielectric resonator nanoantennas at visible frequencies. Opt Express 21(1):1344. https://doi.org/10.1364/oe.21.001344

    Article  PubMed  Google Scholar 

  49. Gotra S, Varshney G, Yaduvanshi RS, Pandey VS (2019) Dual-band circular polarisation generation technique with the miniaturisation of a rectangular dielectric resonator antenna. IET Microwaves, Antennas Propag:Accepted. https://doi.org/10.1049/iet-map.2019.0030

  50. Varshney G, Gotra S, Pandey VS, Yaduvanshi RS (2018) Inverted-sigmoid shaped multiband dielectric resonator antenna with dual-band circular polarization. IEEE Trans Antennas Propagat 66(4):2067–2072. https://doi.org/10.1109/TAP.2018.2800799

    Article  Google Scholar 

  51. Michalski KA, Zheng D (1992) Analysis of microstrip resonators of arbitrary shape. IEEE Trans Microw Theory Tech 40(1):112–119. https://doi.org/10.1109/22.108330

    Article  Google Scholar 

  52. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science (80- ) 324(5932):1312–1314. https://doi.org/10.1126/science.1171245

    Article  CAS  Google Scholar 

  53. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710. https://doi.org/10.1038/nature07719

    Article  CAS  PubMed  Google Scholar 

  54. Liu W et al (2018) Graphene-enabled electrically controlled terahertz meta-lens. Photonics Res 6(7):703. https://doi.org/10.1364/prj.6.000703

    Article  CAS  Google Scholar 

  55. Tai L, Zhu D, Liu X, Yang T, Wang L, Wang R, Jiang S, Chen Z, Xu Z, Li X (2018) Direct growth of graphene on silicon by metal-free chemical vapor deposition. Nano-Micro Lett 10(2):1–9. https://doi.org/10.1007/s40820-017-0173-1

    Article  CAS  Google Scholar 

  56. Xiang P, Wang G, Yang S, Liu Z, Zheng L, Li J, Xu A, Zhao M, Zhu W, Guo Q, Chen D (2019) In situ synthesis of monolayer graphene on silicon for near-infrared photodetectors. RSC Adv 9(64):37512–37517. https://doi.org/10.1039/c9ra06792b

    Article  CAS  Google Scholar 

  57. Chen XD, Liu ZB, Zheng CY, Xing F, Yan XQ, Chen Y, Tian JG (2013) High-quality and efficient transfer of large-area graphene films onto different substrates. Carbon N Y 56:271–278. https://doi.org/10.1016/j.carbon.2013.01.011

    Article  CAS  Google Scholar 

  58. Kajfez D, Glisson AW, James J (1984) Computed modal field distributions for isolated dielectric resonators. IEEE Trans Microw Theory Tech 32(12):1609–1616. https://doi.org/10.1109/TMTT.1984.1132900

    Article  Google Scholar 

  59. Hanson GW (2008) Dyadic green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans Antennas Propag 56(3):747–757. https://doi.org/10.1109/TAP.2008.917005

    Article  Google Scholar 

  60. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  PubMed  Google Scholar 

  61. Varshney G, Gotra S, Pandey VS, Yaduvanshi RS (2019) Proximity-coupled Graphene-patch-based tunable single−/dual-band notch filter for THz applications J Electron Mater. Springer, 48(8):4818–4829. https://doi.org/10.1007/s11664-019-07274-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Varshney.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varshney, G. Tunable Terahertz Dielectric Resonator Antenna. Silicon 13, 1907–1915 (2021). https://doi.org/10.1007/s12633-020-00577-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00577-0

Keywords

Navigation