Skip to main content
Log in

Establishment and assessment of cell suspension cultures of Matricaria chamomilla as a possible source of apigenin under static magnetic field

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

This study represents an optimized protocol for callus establishment and cell suspension culture of Matricaria chamomilla, and the impact of the static magnetic field (SMF) on flavonoid metabolism and antioxidant activity were examined for the first time. The effect of growth regulators was investigated to enhance biomass growth and apigenin production. Murashige and Skoog medium supplemented with 2,4-D (1.5 mg l−1) and Kinetin (0.5 mg l−1) showed the highest callus induction rate (100%), fresh weight, apigenin (0.82%) and apigenin-7-glucoside (1.57%) contents. Cell suspension culture was established, and the optimum subculture time was found to 13–15 days. SMF induced cell leaching and oxidative stress in all treated cells by an increase in H2O2 content and more stimulation of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) enzymes activities. Total phenolic, flavonoid and DPPH activity increased in cells treated to SMF, and the maximum content of apigenin (1.3%) and apigenin-7-glucoside (2.1%) were identified in cell treated to 4 mT. These results provided an effective method for the regulation of flavonoid biosynthesis in M. chamomilla cell suspension culture, and the use of SMF as a tool for the induction of apigenin production.

Key message

Cell suspension cultures of Matricaria chamomilla contain valuable medicinal flavonoids. Static magnetic field promoted apigenin production and antioxidative enzyme activities in M. chamomilla cell suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abeles FB, Biles CL (1991) Characterization of peroxidases in lignifying peach fruit endocarp. Plant Physiol 95:269–273. https://doi.org/10.1104/pp.95.1.269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aladjadjiyan A (2010) Influence of stationary magnetic field on lentil seeds. Int Agrophys 24:321–324

    Google Scholar 

  • Aleman EI, Mbogholi A, Boix YF, Gonzalez-Ohnedo J, Chalfun A (2014) Effects of EMFs on some biological parameters in coffee plants (Coffea arabica L.) obtained by in vitro propagation. Pol J Environ Stud 23:95–101

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Banaz M (2018) In vivo, in vitro micropropagation and chemical characterization of medicinal compounds in chamomile and yarrow species (Asteraceae). University of Plymouth Research Theses. https://pearl.plymouth.ac.uk.

  • Barreca D, Laganà G, Leuzzi U, Smeriglio A, Trombetta D, Bellocco E (2016) Evaluation of the nutraceutical, antioxidant and cytoprotectiveproperties of ripe pistachio (Pistaciavera L., variety Bronte) Hulls. Food Chem 196:493–502

    CAS  PubMed  Google Scholar 

  • Bhojwani SS, Razdan MK (1983) Plant tissue culture: theory and practice. Elsevier, Amsterdam

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Çelik Ö, Büyükuslu N, Atak Ç, Rzakoulieva A (2009) Effects of magnetic field on activity of superoxide dismutase and catalase in Glycine max (L.) Merr. Roots Pol J Environ Stud 18:175–182

    Google Scholar 

  • Chawla HS (2002) Introduction to plant biotechnology, 2nd edn. Science Publishers INC, New Hampshire, USA, 528 p

    Google Scholar 

  • Çolgecen H, Atar H, Toker G, Akgul G (2018) Callus production and analysis of some secondary metabolites in Globulariatrichosantha subsp. trichosantha. Turk J Bot 42:559–567. https://doi.org/10.3906/bot-1712-13

    Article  CAS  Google Scholar 

  • Demir Y, Kocaliskan I (2001) Effects of NaCl and proline on polyphenol oxidase activity in bean seedlings. Biol Plant 44:607–609

    CAS  Google Scholar 

  • Durmus NG, Tekin HC, Guven S, Sridhar K, ArslanYildiz A, Calibasi G, Ghiran I, Davis RW, Steinmetz LM, Demirci U (2015) Magnetic levitation of single cells. PNAS 112(28):E3661–E3668

    CAS  PubMed  Google Scholar 

  • Estrada-Zuniga ME, Cruz-Sosa F, Rodrıguez-Monroy M, Verde-Calvo JR, Vernon-Carter EJ (2009) Phenylpropanoid production in callus and cell suspension cultures of Buddleja cordata Kunth. Plant Cell Tissue Organ Cult 97:39–47

    CAS  Google Scholar 

  • Forni C, Frattarelli A, Damiano C (1998) Different size, shape and growth behavior of cells in suspension cultures of strawberry (Fragaria x ananassa Duch.). Plant Biosys 133(2):205–212

    Google Scholar 

  • Galland P, Pazur A (2005) Magnetoreception in plants. J Plant Res 118:371–389

    PubMed  Google Scholar 

  • George EF, Hall MA, De Klerk GJ (2008) Plant propagation by tissue culture, vol 1. 3rd edn. Springer, Dordrecht, The Netherlands, p 501

    Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases II. Purification and quantitative relationship with water-soluble protein in seedlings. J Plant Physiol 59:315–318

    CAS  Google Scholar 

  • Giri A, Narasu ML (2000) Production of podophyllotoxin from Podophyllumhexandrum: a potential natural product forclinically useful anticancer drugs. Cytotech 34:17–26. https://doi.org/10.1023/A:1008138230896

    Article  CAS  Google Scholar 

  • Haghi G, Hatami A, Mehran M (2014) Analysis of phenolic compounds in Matricaria chamomilla and its extracts by UPLC-UV. Res Pharma Sci 9(1):31–37

    CAS  Google Scholar 

  • Hazeena MS, Sulekha GR (2008) Callus induction and plantlet regeneration in Aegle marmelos (L.) Corr. using cotyledon explants. J Trop Agr 46:79–84

    CAS  Google Scholar 

  • Hatamnia AA, Abbaspour N, Darvishzadeh R (2014) Antioxidant activity and phenolic profile of different parts of Bene (Pistaciaatlantica subsp. kurdica) fruits. Food Chem 145:306–311

    CAS  PubMed  Google Scholar 

  • Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotech 22:1415–1422. https://doi.org/10.1038/nbt1027

    Article  CAS  Google Scholar 

  • Jebara S, Jebara M, Limam F, Aouani ME (2005) Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Plant Physiol 162:929–936

    CAS  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Ajayk P (2006) Antioxidative response mechanisms in halophytes: their role in stress defense. J Genetics 85:237–254

    CAS  Google Scholar 

  • Khan MA, Abbasi BH, Ahmed N, Ali H (2013) Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum. Indust Crop Product 46:105–110

    CAS  Google Scholar 

  • Maffei ME (2014) Magnetic field effects on plant growth, development, and evolution. Front Plant Sci 5:445

    PubMed  PubMed Central  Google Scholar 

  • Mansourkhaki M, Hassanpour H, Hekmati M (2019) Effect of static magnetic field on growth factors, antioxidant activity and anatomical responses of Silybum marianum seedlings. J Plant Proc Func 7(28):9–15

    Google Scholar 

  • Matamoros MA, Dalton DA, Ramos J, Clemente MR, Rubio MC, Becana M (2003) Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis. Plant Physiol 133:499–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur S, Shekhawat GS (2013) Establishment and characterization of Stevia rebaudiana (Bertoni) cell suspension culture: an in vitro approach for production of stevioside. Acta Physiol Plant 35:931–939. https://doi.org/10.1007/s11738-012-1136-2

    Article  CAS  Google Scholar 

  • Miean KH, Mohamed S (2001) Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) content of edible tropical plants. J Agric Food Chem 49(6):3106–3112. https://doi.org/10.1021/jf000892m

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Palacio L, Cantero JJ, Cusidóc RM, Goleniowski ME (2012) Phenolic compound production in relation to differentiation in cell and tissue cultures of Larreadi varicata (Cav.). Plant Sci 193–194:1–7

    PubMed  Google Scholar 

  • Patel D, Shukla S, Gupta S (2007) Apigenin and cancer chemoprevention: progress, potential and promise. Int J Onco 30:233–245

    CAS  Google Scholar 

  • Patro BS, Bauri AK, Mishra S, Chattopadhyay S (2005) Antioxidant activity of Myristica malabarica extracts and their constituents. J Agri Food Chem 53:6912–6918

    CAS  Google Scholar 

  • Pauling L (1979) Diamagnetic anisotropy of the peptide group. PNAS 76(5):2293–2294

    CAS  PubMed  Google Scholar 

  • Payez A, Ghanati F, Behmanesh M, Abdolmaleki P, Hajnorouzi A, Rajabbeigi E (2013) Increase of seed germination, growth and membrane integrity of wheat seedlings by exposure to static and a 10-KHz. Electromagne Biol Med 32:417–429

    CAS  Google Scholar 

  • Pazmiño DM, Romero-Puertas MC, Sandalio LM (2012) Insights into the toxicity mechanism of and cell response to the herbicide 2,4-D in plants. Plant Signal Behav 7:1–3

    Google Scholar 

  • Primiano T, Sutter RT, Kensler WT (1997) Redox regulation of genes that protect against carcinogens. Comp Biochem Physiol 118(4):487–497

    CAS  Google Scholar 

  • Qui JA, Castro-Concha LA, García-Sosa K, Peña-Rodríuez LM, Miranda-Ham ML (2009) Differential effects of phytotoxic metabolites from Alternaria tageticaon Tageteserecta cell cultures. J Gen Plant Pathol 75:331–339

    CAS  Google Scholar 

  • Rajabbeigi E, Ghanati F, Abdolmaleki P, Payez A (2013) Antioxidant capacity of parsley cells (Petroselinum crispum L.) in relation to iron-induced ferritin levels and static magnetic field. Electromagn Biol Med 32:430–441. https://doi.org/10.3109/15368378.2012.736441

    Article  CAS  PubMed  Google Scholar 

  • Ranpariya V, Parmar S, Sheth N, Chandrashekhar V (2011) Neuroprotective activity of Matricaria recutita against fluoride-induced stress in rats. Pharma Biol 49:696–701

    CAS  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotech Adv 20:101–153. https://doi.org/10.1016/S0734-9750(02)00007-1

    Article  CAS  Google Scholar 

  • Rao S, Usha K, Shetty A (2015) Production of secondary metabolites from callus cultures of Centella asiatica (L.) Urban Srinath. Ann Phytomed 4(1):74–78

    CAS  Google Scholar 

  • Ray BP, Hassan L, Nasiruddin KM (2011) In vitro regeneration of BRINJAL (Solanum melongena L.). Bangladesh J Agric Res 36:397–406. https://doi.org/10.3329/bjar.v36i3.9268

    Article  Google Scholar 

  • Rezaei A, Ghanati F, Behmanesh M (2010) Static magnetic field improved salicylic acid effect on taxol production in suspension cultured hazel (Corylus avellana) cells. In: 6th International workshop on biological effects of electromagnetic fields pp 70–71.

  • Sahebjamei H, Abdolmaleki P, Ghanati F (2007) Effects of magnetic field on the antioxidant enzyme activities of suspension-cultured tobacco cells. Bioelectromagnet 28:42–47

    CAS  Google Scholar 

  • Sharma V, Ramawat KG (2013) Salinity-induced modulation of growth and antioxidant activity in the callus cultures of miswak (Salvadora persica). Biotechnol 3(1):11–17

    Google Scholar 

  • Sayadi V, Mehrabi AA, Saidi M, Nourollahi K (2014) In vitro culture and callus induction of chamomile (Matricaria chamomilla L. ) explants under different concentrations of plant growth regulators. Int J Biosci 10:206–211. https://doi.org/10.12692/ijb/4.10.206-211

    Article  CAS  Google Scholar 

  • Sebai H, Jabri M-A, Souli A, Rtibi K, Selmi S, Tebourbi O, El-Benna J, Sakly M (2014) Antidiarrheal and antioxidant activities of chamomile (Matricaria recutita L.) decoction extract in rats. J Ethnophar 152:327–332. https://doi.org/10.1016/j.jep.2014.01.015

    Article  CAS  Google Scholar 

  • Serrano R, Mulet J, Rios G, Marquez J, Larrinoa I, Leube M, Mendizabal I, Pascual-Ahuir A, Proft M, Ros R, Montesinos C (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50:1023–1036

    CAS  Google Scholar 

  • Silva N, Barbosa L, Seito L, Fernandes Junior A (2012) Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants. Nat Pro Res 26:1510–1514. https://doi.org/10.1080/14786419.2011.564582

    Article  CAS  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Srivastava JK, Gupta S (2007) Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells. J Agric Food Chem 55:9470–9478. https://doi.org/10.1021/jf071953k

    Article  CAS  PubMed  Google Scholar 

  • Stafford A, Warren G (1991) Plant cell and tissue culture. Open University Press, Buckingham

    Google Scholar 

  • Taghizadeh M, Nasibi F, Kalantari KM, Ghanati F (2019) Evaluation of secondary metabolites and antioxidant activity in Dracocephalum polychaetum Bornm. cell suspension culture under magnetite nanoparticles and static magnetic field elicitation. Plant Cell Tiss Organ Cult 136:489–498

    CAS  Google Scholar 

  • Tahsili J, Sharifi M, Safaie N, Esmaeilzadeh-Bahabadi S, Behmanesh M (2014) Induction of lignans and phenolic compounds in cell culture of Linum album by culture filtrate of Fusarium graminearum. J Plant Interact 9:412–417. https://doi.org/10.1080/17429145.2013.846419

    Article  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    CAS  Google Scholar 

  • Venkov P, Topashka-Ancheva M, Georgieva M, Alexeiva V, Karanov E (2000) Genotoxic effects of substituted phenoxyacetic acid. Arch Toxicol 74:560–566

    CAS  PubMed  Google Scholar 

  • Xue FF, Liu L, Liu ZP, Mehta SK, Zhao GM (2008) Protective role of Ca against NaCl toxicity in Jerusalem artichoke by up-regulation of antioxidant enzyme. Pedos 18:766–774

    Google Scholar 

  • Zhang L, Yang XX, Liu JJ, Luo Y, Li ZY, Ji XM, Wang WC, Zhang X (2015) 1 T moderate intensity static magnetic field affects Akt/mTOR pathway and increases the antitumor efficacy of mTOR inhibitors in CNE-2Z cells. Sci Bull 60(24):2120–2128

    CAS  Google Scholar 

  • Zhang L, Ji X, Yang X, Zhang X (2017) Cell type- and density-dependent effect of 1 T static magnetic field on cell proliferation. Onco 8(8):13126–13141. https://doi.org/10.18632/oncotarget.14480

    Article  Google Scholar 

  • Zemestani M, Rafraf M, Asghari-Jafarabadi M (2016) Chamomile tea improves glycemic indices and antioxidants status in patients with type 2 diabetes mellitus. Nut 32:66–72. https://doi.org/10.1016/j.nut.2015.07.011

    Article  CAS  Google Scholar 

  • Zeng FS, Wang WW, Zhan YG, Xin Y (2009) Establishment of the callus and cell suspension culture of Elaeagnusan gustifolia for the production of condensed tannins. Afric J Biotech 8:5005–5010

    CAS  Google Scholar 

  • Złotek U, Świeca M, Jakubczyk A (2014) Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.). Food Chem 148:253–260

    PubMed  Google Scholar 

Download references

Acknowledgements

The financial support of this study was provided using research grant 95841966 from the Iran National Science Foundation (INFS).

Author information

Authors and Affiliations

Authors

Contributions

HH and VN designed the project and discussed the results. HH participated in the bench experiments, and organized the manuscript.

Corresponding author

Correspondence to Halimeh Hassanpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Konstantin V. Kiselev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanpour, H., Niknam, V. Establishment and assessment of cell suspension cultures of Matricaria chamomilla as a possible source of apigenin under static magnetic field. Plant Cell Tiss Organ Cult 142, 583–593 (2020). https://doi.org/10.1007/s11240-020-01885-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01885-4

Keywords

Navigation