Skip to main content
Log in

Construction of self-sensitized LiErF4: 0.5% Tm3+@LiYF4 upconversion nanoprobe for trace water sensing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

LiErF4 was commonly used as a dipolar-coupled antiferromagnet, and was rarely considered as a luminescent material. Herein, we achieved the strong red upconversion emission of LiErF4 simply by an inert shell coating, i.e., LiErF4@LiYF4. Owing to the unique and intrinsic ladder-like energy levels of Er3+ ions, this LiErF4 core-shell nanostructures present red emission (∼ 650 nm) under multi-band excitation in the near-infrared (NIR) region (∼ 808, ∼ 980, and ∼ 1,530 nm). A brighter and monochromic red emission can be further obtained via doping 0.5% Tm3+ into the LiErF4 core, i.e., LiErF4: 0.5% Tm3+@LiYF4. The enriched Er3+ ions and strong monochromic red emission natures make LiErF4: 0.5% Tm3+@LiYF4 nanocrystals very sensitive for trace water probing in organic solvents with detection limit of 30 ppm in acetonitrile, 50 ppm in dimethyl sulfoxide (DMSO), and 58 ppm in N, N-dimethylformamide (DMF) under excitation of 808 nm. Due to their superior chemical and physical stability, these nanoprobes exhibit excellent antijamming ability and recyclability, offering them suitable for real-time and long-term water monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, L. Y.; Li, Y. D. Luminescent coordination compound nanospheres for water determination. Small2007, 3, 1218–1221.

    CAS  Google Scholar 

  2. Nussbaum, R.; Lischke, D.; Paxmann, H.; Wolf, B. Quantitative GC determination of water in small samples. Chromatographia2000, 51, 119–121.

    CAS  Google Scholar 

  3. Lee, W.; Jin, Y. J.; Park, L. S.; Kwak, G. Fluorescent actuator based on microporous conjugated polymer with intramolecular stack structure. Adv. Mater.2012, 24, 5604–5609.

    CAS  Google Scholar 

  4. Dantan, N.; Frenzel, W.; Kuppers, S. Determination of water traces in various organic solvents using Karl Fischer method under FIA conditions. Talanta2000, 52, 101–109.

    CAS  Google Scholar 

  5. Men, G. W.; Zhang, G. R.; Liang, C. S.; Liu, H. L.; Yang, B.; Pan, Y. Y.; Wang, Z. Y.; Jiang, S. M. A dual channel optical detector for trace water chemodosimetry and imaging of live cells. Analyst2013, 138, 2847–2857.

    CAS  Google Scholar 

  6. Yang, X.; Niu, C. G.; Shang, Z. J.; Shen, G. L.; Yu, R. Q. Optical-fiber sensor for determining water content in organic solvents. Sens. Actuators B Chem.2001, 75, 43–47.

    CAS  Google Scholar 

  7. Citterio, D.; Minamihashi, K.; Kuniyoshi, Y.; Hisamoto, H.; Sasaki, S. I.; Suzuki, K. Optical determination of low-level water concentrations in organic solvents using fluorescent acridinyl dyes and dye-immobilized polymer membranes. Anal. Chem.2001, 73, 5339–5345.

    CAS  Google Scholar 

  8. Ding, L.; Zhang, Z. Y.; Li, X.; Su, J. H. Highly sensitive determination of low-level water content in organic solvents using novel solvatochromic dyes based on thioxanthone. Chem. Commun.2013, 49, 7319–7321.

    CAS  Google Scholar 

  9. Jung, H. S.; Verwilst, P.; Kim, W. Y.; Kim, J. S. Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem. Soc. Rev.2016, 45, 1242–1256.

    CAS  Google Scholar 

  10. Yao, M. Z.; Chen, W. Hypersensitive luminescence of Eu3+ in dimethyl sulfoxide as a new probing for water measurement. Anal. Chem.2011, 83, 1879–1882.

    CAS  Google Scholar 

  11. Deng, Q. L.; Li, Y. L.; Wu, J. H.; Liu, Y.; Fang, G. Z.; Wang, S.; Zhang, Y. K. Highly sensitive fluorescent sensing for water based on poly (m-aminobenzoic acid). Chem. Commun.2012, 48, 3009–3011.

    CAS  Google Scholar 

  12. Guo, S. H.; Xie, X. J.; Huang, L.; Huang, W. Sensitive water probing through nonlinear photon Upconversion of lanthanide-doped nanoparticles. ACS Appl. Mater. Interfaces2016, 8, 847–853.

    CAS  Google Scholar 

  13. Chen, D. Q.; Xu, M.; Huang, P.; Ma, M. F.; Ding, M. Y.; Lei, L. Water detection through Nd3+-sensitized photon upconversion in core-shell nanoarchitecture. J. Mater. Chem. C2017, 5, 5434–5443.

    CAS  Google Scholar 

  14. Wang, W.; Zhao, M. Y.; Wang, L; Chen, H. Q. Core-shell upconversion nanoparticles of type NaGdF4: Yb, Er@NaGdF4: Nd, Yb and sensitized with a NIR dye are a viable probe for luminescence determination of the fraction of water in organic solvents. Microchim. Acta2019, 186, 630.

    Google Scholar 

  15. Xu, J. T.; Gulzar, A.; Yang, P. P.; Bi, H. T.; Yang, D.; Gai, S. L.; He, F.; Lin, J.; Xing, B. G.; Jin, D. Y. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for Bioimaging. Coord. Chem. Rev.2019, 381, 104–134.

    CAS  Google Scholar 

  16. Wen, S. H.; Zhou, J. J.; Zheng, K. Z.; Bednarkiewicz, A.; Liu, X. G.; Jin, D. Y. Advances in highly doped upconversion nanoparticles. Nat. Commun.2018, 9, 2415.

    Google Scholar 

  17. Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev.2015, 115, 10725–10815.

    CAS  Google Scholar 

  18. Chen, G. Y.; Qiu, H. L.; Prasad, P. N.; Chen, X. Y. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev.2014, 114, 5161–5214.

    CAS  Google Scholar 

  19. Gai, S.; Li, C.; Yang, P.; Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev.2014, 114, 2343–2389.

    CAS  Google Scholar 

  20. Li, X. M.; Zhang, F.; Zhao, D. Y. Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev.2015, 44, 1346–1378.

    CAS  Google Scholar 

  21. Tu, L. P.; Liu, X. M.; Wu, F.; Zhang, H. Excitation energy migration dynamics in upconversion nanomaterials. Chem. Soc. Rev.2015, 44, 1331–1345.

    CAS  Google Scholar 

  22. Wang, F.; Wang, J.; Liu, X. G. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem., Int. Ed.2010, 49, 7456–7460.

    CAS  Google Scholar 

  23. Arppe, R.; Hyppänen, I.; Perälä, N.; Peltomaa, R.; Kaiser, M.; Wurth, C.; Christ, S.; Resch-Genger, U.; Schäferling, M.; Soukka, T. Quenching of the upconversion luminescence of NaYF4: Yb3+, Er3+ and NaYF4: Yb3+, Tm3+ nanophosphors by water: The role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale2015, 7, 11746–11757.

    CAS  Google Scholar 

  24. Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed.2011, 50, 5808–5829.

    CAS  Google Scholar 

  25. Chen, G. Y.; Yang, C. H.; Prasad, P. N. Nanophotonics and nanochemistry: Controlling the excitation dynamics for frequency up- and down-conversion in lanthanide-doped nanoparticles. Acc. Chem. Res.2013, 46, 1474–1486.

    CAS  Google Scholar 

  26. Zuo, J.; Li, Q. Q.; Xue, B.; Li, C. X.; Chang, Y. L.; Zhang, Y. L.; Liu, X. M.; Tu, L. P.; Zhang, H.; Kong, X. G. Employing shells to eliminate concentration quenching in photonic upconversion nanostructure. Nanoscale2017, 9, 7941–7946.

    CAS  Google Scholar 

  27. Chen, Q. S.; Xie, X. J.; Huang, B. L.; Liang, L. L.; Han, S. Y.; Yi, Z. G.; Wang, Y.; Li, Y.; Fan, D. Y.; Huang, L. et al. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping. Angew. Chem., Int. Ed.2017, 56, 7605–7609.

    CAS  Google Scholar 

  28. Zuo, J.; Tu, L. P.; Li, Q. Q.; Feng, Y. S.; Que, I.; Zhang, Y. L.; Liu, X. M.; Xue, B.; Cruz, L. J.; Chang, Y. L. et al. Near infrared light sensitive ultraviolet-blue Nanophotoswitch for imaging-guided “Off-On” therapy. ACS Nano2018, 12, 3217–3225.

    CAS  Google Scholar 

  29. Na, H. J.; Jeong, J. S.; Chang, H. J.; Kim, H. Y.; Woo, K.; Lim, K.; Mkhoyan, K. A.; Jang, H. S. Facile synthesis of intense green light emitting LiGdF4: Yb, Er-based upconversion bipyramidal nanocrystals and their polymer composites. Nanoscale2014, 6, 7461–7468.

    CAS  Google Scholar 

  30. Huang, P.; Zheng, W.; Zhou, S. Y.; Tu, D. T.; Chen, Z.; Zhu, H. M.; Li, R. F.; Ma, E.; Huang, M. D.; Chen, X. Y. Lanthanide-doped LiLuF4 Upconversion Nanoprobes for the detection of disease biomarkers. Angew. Chem., Int. Ed.2014, 53, 1252–1257.

    CAS  Google Scholar 

  31. Mahalingam, V.; Vetrone, F.; Naccache, R.; Speghini, A.; Capobianco, J. A. Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: Multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv. Mater.2009, 21, 4025–4028.

    CAS  Google Scholar 

  32. Huang, P.; Zheng, W.; Tu, D. T.; Shang, X. Y.; Zhang, M. R.; Li, R. F.; Xu, J.; Liu, Y.; Chen, X. Y. Unraveling the electronic structures of neodymium in LiLuF4 Nanocrystals for ratiometric temperature sensing. Adv. Sci.2019, 6, 1802282.

    Google Scholar 

  33. Aebischer, A.; Hostettler, M.; Hauser, J.; Krämer, K.; Weber, T.; Gudel, H. U.; Bürgi, H. B. Structural and spectroscopic characterization of active sites in a family of light-emitting sodium lanthanide tetrafluorides. Angew. Chem., Int. Ed.2006, 45, 2802–2806.

    CAS  Google Scholar 

  34. Kim, H. J.; Song, J. S.; Kim, S. S. Efficiency enhancement of solar cell by down-conversion effect of Eu3+ doped LiGdF4. J. Korean Phys. Soc.2004, 45, 609–613.

    CAS  Google Scholar 

  35. Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater.2011, 10, 968–973.

    CAS  Google Scholar 

  36. Babkevich, P.; Finco, A.; Jeong, M.; Piazza, B. D.; Kovacevic, I.; Klughertz, G.; Krämer, K. W.; Kraemer, C.; Adroja, D. T.; Goremychkin, E. et al. Neutron spectroscopic study of crystal-field excitations and the effect of the crystal field on dipolar magnetism in LiRF4 (R = Gd, Ho, Er, Tm, and Yb). Phys. Rev. B2015, 92, 144422.

    Google Scholar 

  37. Kraemer, C.; Nikseresht, N.; Piatek, J. O.; Tsyrulin, N.; Dalla Piazza, B.; Kiefer, K.; Klemke, B.; Rosenbaum, T. F.; Aeppli, G.; Gannarelli, C. et al. Dipolar antiferromagnetism and quantum criticality in LiErF4. Science2012, 336, 1416–1419.

    CAS  Google Scholar 

  38. Johnson, N. J. J.; Korinek, A.; Dong, C. H.; van Veggel, F. C. J. M. Self-focusing by ostwald ripening: A strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J. Am. Chem. Soc.2012, 134, 11068–11071.

    CAS  Google Scholar 

  39. Dong, A. G.; Ye, X. C.; Chen, J.; Kang, Y. J.; Gordon, T.; Kikkawa, J. M.; Murray, C. B. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc.2011, 133, 998–1006.

    CAS  Google Scholar 

  40. Chen, G. Y.; Ohulchanskyy, T. Y.; Kachynski, A.; Ågren, H.; Prasad, P. N. Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4: Er3+ nanocrystals under excitation at 1,490 nm. ACS Nano2011, 5, 4981–4986.

    CAS  Google Scholar 

  41. Vetrone, F.; Boyer, J. C.; Capobianco, J. A.; Speghini, A.; Bettinelli, M. Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3: Er3+. Chem. Mater.2003, 15, 2737–2743.

    CAS  Google Scholar 

  42. Shang, X. Y.; Chen, P.; Jia, T. Q.; Feng, D. H.; Zhang, S.; Sun, Z. R.; Qiu, J. R. Upconversion luminescence mechanisms of Er3+ ions under excitation of an 800 nm laser. Phys. Chem. Chem. Phys.2015, 17, 11481–11489.

    CAS  Google Scholar 

  43. Chan, E. M.; Han, G.; Goldberg, J. D.; Gargas, D. J.; Ostrowski, A. D.; Schuck, P. J.; Cohen, B. E.; Milliron, D. J. Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission. Nano Lett.2012, 12, 3839–3845.

    CAS  Google Scholar 

  44. Couto dos Santos, M. A.; Antic-Fidancev, E.; Gesland, J. Y.; Krupa, J. C.; Lemaître-Blaise, M.; Porcher, P. Absorption and fluorescence of Er3+-doped LiYF4: Measurements and simulation. J. Alloys Compd.1998, 275–277, 435–441.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Science and Technology Development Program of Jilin Province (No. 20170520162JH), the National Key Research and Development Program of China (No. 016YFC0207300), the National Natural Science Foundation of China (Nos. 61875191, 11874354, 61722305, and 61833006), the Program for Jilin University Science and Technology Innovative Research Team (No. JLUSTIRT 2017TD-07), Jilin Development and Reform Commission (No. 2018C052-10), and the Open Project of State Key Laboratory of Supramolecular Structure and Materials (No. sklssm202023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaomin Liu or Geyu Lu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, X., Wang, W. et al. Construction of self-sensitized LiErF4: 0.5% Tm3+@LiYF4 upconversion nanoprobe for trace water sensing. Nano Res. 13, 2803–2811 (2020). https://doi.org/10.1007/s12274-020-2932-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2932-4

Keywords

Navigation