Skip to main content
Log in

Enhancing through-plane thermal conductivity of fluoropolymer composite by developing in situ nano-urethane linkage at graphene—graphene interface

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Attributed to the intense development and complexity in electronic devices, energy dissipation is becoming more essential nowadays. The carbonaceous materials particularly graphene (Gr)-based thermal interface materials (TIMs) are exceptional in heat management. However, because of the anisotropic behavior of Gr in composites, the TIMs having outstanding through-plane thermal conductivity (TC) are needed to fulfill the upcoming innovation in numerous devices. In order to achieve this, herein, nano-urethane linkage-based modified Gr and carbon fibers architecture termed as nanourethane linkage (NUL)-Gr/carbon fibers (CFs) is fabricated. Wherein, toluene diisocyanate is utilized to develop a novel but simple NUL to shape a new interface between graphene sheets. Interestingly, the prepared composite of NUL-Gr/CFs with polyvinylidene fluoride matrix shows outstanding performance in heat management. Owing to the unique structure of NUL-Gr/CFs, an unprecedented value of TC (~ 7.96 W·m−1·K−1) is achieved at a low filler fraction of 13.8 wt.% which translates into an improvement of ~ 3,980% of pristine polymer. The achieved outcomes elucidate the significance of the covalent interaction between graphene sheets as well as strong bonding among graphene and matrix in the composites and manifest the potential of proposed NUL-Gr/CFs architecture for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moore, A. L.; Shi, L. Emerging challenges and materials for thermal management of electronics. Mater. Today2014, 17, 163–174.

    CAS  Google Scholar 

  2. Jeon, D.; Kim, S. H.; Choi, W.; Byon, C. An experimental study on the thermal performance of cellulose-graphene-based thermal interface materials. Int. J. Heat Mass Tran.2019, 132, 944–951.

    CAS  Google Scholar 

  3. Kostarelos, K.; Novoselov, K. S. Graphene devices for life. Nat. Nanotechnol.2014, 9, 744–745.

    CAS  Google Scholar 

  4. Razeeb, K. M.; Dalton, E.; Cross, G. L. W.; Robinson, A. J. Present and future thermal interface materials for electronic devices. Int. Mater. Rev.2018, 63, 1–21.

    CAS  Google Scholar 

  5. Dai, W.; Ma, T. F.; Yan, Q. W.; Gao, J. Y.; Tan, X.; Lv, L.; Hou, H.; Wei, Q. P.; Yu, J. H.; Wu, J. B. et al. Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano2019, 13, 11561–11571.

    CAS  Google Scholar 

  6. Barani, Z.; Mohammadzadeh, A.; Geremew, A.; Huang, C. Y.; Coleman, D.; Mangolini, L.; Kargar, F.; Balandin, A. A. Thermal properties of the binary-filler hybrid composites with graphene and copper nanoparticles. Adv. Funct. Mater.2020, 30, 1904008.

    CAS  Google Scholar 

  7. Bae, S. H.; Kum, H.; Kong, W.; Kim, Y.; Choi, C.; Lee, B.; Lin, P.; Park, Y.; Kim, J. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater.2019, 18, 550–560.

    CAS  Google Scholar 

  8. Yang, H. Y.; Tang, Y. Q.; Yang, P. Factors influencing thermal transport across graphene/metal interfaces with van der Waals interactions. Nanoscale2019, 11, 14155–14163.

    CAS  Google Scholar 

  9. Zhang, F.; Feng, Y. Y.; Qin, M. M.; Gao, L.; Li, Z. Y.; Zhao, F. L.; Zhang, Z. X.; Lv, F.; Feng, W. Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite. Adv. Funct. Mater.2019, 29, 1901383.

    Google Scholar 

  10. Mahmood, N.; Islam, M.; Hameed, A.; Saeed, S.; Khan, A. N. Polyamide-6-based composites reinforced with pristine or functionalized multi-walled carbon nanotubes produced using melt extrusion technique. J. Compos. Mater.2013, 48, 1197–1207.

    Google Scholar 

  11. Wang, H.; Nie, S.; Li, H.; Ali, R.; Fu, J.; Xiong, H. J.; Li, J.; Wu, Z. Q.; Lau, W. M.; Mahmood, N. et al. 3D hollow quasi-graphite capsules/polyaniline hybrid with a high performance for room-temperature ammonia gas sensors. ACS Sensors2019, 4, 2343–2350.

    CAS  Google Scholar 

  12. Jia, Y.; Cao, A. Y.; Bai, X.; Li, Z.; Zhang, L. H.; Guo, N.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H. et al. Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett.2011, 11, 1901–1905.

    CAS  Google Scholar 

  13. Christensen, A.; Graham, S. Thermal effects in packaging high power light emitting diode arrays. Appl. Therm. Eng.2009, 29, 364–371.

    CAS  Google Scholar 

  14. Aslam, S.; Sagar, R. U. R.; Liu, Y. X.; Anwar, T.; Zhang, L. W.; Zhang, M.; Mahmood, N.; Qiu, Y. J. Graphene decorated polymeric flexible materials for lightweight high areal energy lithium-ion batteries. Appl. Mater. Today2019, 17, 123–129.

    Google Scholar 

  15. Jian, X.; Wang, H.; Rao, G. F.; Jiang, L. Y.; Wang, H. N.; Subramaniyam, C. M.; Mahmood, A.; Zhang, W. L.; Xiang, Y.; Dou, S. X. et al. Self-tunable ultrathin carbon nanocups as the electrode material of sodium-ion batteries with unprecedented capacity and stability. Chem. Eng. J.2019, 364, 578–588.

    CAS  Google Scholar 

  16. Ali, Z.; Asif, M.; Zhang, T.; Huang, X. X.; Hou, Y. L. General approach to produce nanostructured binary transition metal selenides as high-performance sodium ion battery anodes. Small2019, 15, 1901995.

    Google Scholar 

  17. Ali, Z.; Zhang, T.; Asif, M.; Zhao, L.; Yu, Y.; Hou, Y. L. Transition metal chalcogenide anodes for sodium storage. Mater. Today2020, 35, 131–167.

    CAS  Google Scholar 

  18. Ren, Y. J.; Guo, H. C.; Liu, Y. H.; Lv, R. C.; Zhang, Y. F.; Maqbool, M.; Bai, S. L. A trade-off study toward highly thermally conductive and mechanically robust thermoplastic composites by injection moulding. Compos. Sci. Technol.2019, 183, 107787.

    CAS  Google Scholar 

  19. Aftab, W.; Mahmood, A.; Guo, W. H.; Yousaf, M.; Tabassum, H.; Huang, X. Y.; Liang, Z. B.; Cao, A. Y.; Zou, R. Q. Polyurethane-based flexible and conductive phase change composites for energy conversion and storage. Energy Storage Mater.2019, 20, 401–409.

    Google Scholar 

  20. Aftab, W.; Huang, X. Y.; Wu, W. H.; Liang, Z. B.; Mahmood, A.; Zou, R. Q. Nanoconfined phase change materials for thermal energy applications. Energy Environ. Sci.2018, 11, 1392–1424.

    CAS  Google Scholar 

  21. Ji, C.; Yan, C. Z.; Wang, Y.; Xiong, S. X.; Zhou, F. R.; Li, Y. Y.; Sun, R.; Wong, C. P. Thermal conductivity enhancement of CNT/MoS2/graphene-epoxy nanocomposites based on structural synergistic effects and interpenetrating network. Compos. Part B: Eng.2019, 163, 363–370.

    CAS  Google Scholar 

  22. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett.2008, 8, 902–907.

    CAS  Google Scholar 

  23. Dai, W.; Lv, L.; Lu, J. B.; Hou, H.; Yan, Q. W.; Alam, F. E.; Li, Y. F.; Zeng, X. L.; Yu, J. H.; Wei, Q. P. et al. A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano2019, 13, 1547–1554.

    CAS  Google Scholar 

  24. Warzoha, R. J.; Donovan, B. F. High resolution steady-state measurements of thermal contact resistance across thermal interface material junctions. Rev Sci. Instrum.2017, 88, 094901.

    Google Scholar 

  25. Hameed, A.; Islam, M.; Ahmad, I.; Mahmood, N.; Saeed, S.; Javed, H. Thermal and mechanical properties of carbon nanotube/epoxy nanocomposites reinforced with pristine and functionalized multiwalled carbon nanotubes. Polym. Compos.2015, 36, 1891–1898.

    CAS  Google Scholar 

  26. Renteria, J. D.; Ramirez, S.; Malekpour, H.; Alonso, B.; Centeno, A.; Zurutuza, A.; Cocemasov, A. I.; Nika, D. L.; Balandin, A. A. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater.2015, 25, 4664–4672.

    CAS  Google Scholar 

  27. Xin, G. Q.; Sun, H. T.; Hu, T.; Fard, H. R.; Sun, X.; Koratkar, N.; Borca-Tasciuc, T.; Lian, J. Large-area freestanding graphene paper for superior thermal management. Adv. Mater.2014, 26, 4521–4526.

    CAS  Google Scholar 

  28. Shen, B.; Zhai, W. T.; Zheng, W. G. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater.2014, 24, 4542–4548.

    CAS  Google Scholar 

  29. Kong, Q. Q.; Liu, Z.; Gao, J. G.; Chen, C. M.; Zhang, Q.; Zhou, G. M.; Tao, Z. C.; Zhang, X. H.; Wang, M. Z.; Li, F. et al. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader. Adv. Funct. Mater.2014, 24, 4222–4228.

    CAS  Google Scholar 

  30. Jackie, D. R.; Sylvester, R.; Hoda, M.; Beatriz, A.; Alba, C.; Amaia, Z.; Alexandr, I. C.; Denis, L. N.; Balandin, A. A. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater.2015, 25, 4664–4672.

    Google Scholar 

  31. Yim, M. J.; Paik, K. W. Recent advances on anisotropic conductive adhesives (ACAs) for flat panel displays and semiconductor packaging applications. Int. J. Adhes Adhes.2006, 26, 304–313.

    CAS  Google Scholar 

  32. Meng, X.; Pan, H.; Zhu, C. L.; Chen, Z. X.; Lu, T.; Xu, D.; Li, Y.; Zhu, S. M. Coupled chiral structure in graphene-based film for ultrahigh thermal conductivity in both in-plane and through-plane directions. ACS Appl. Mater. Interfaces2018, 10, 22611–22622.

    CAS  Google Scholar 

  33. Yousefi, N.; Gudarzi, M. M.; Zheng, Q. B.; Aboutalebi, S. H.; Sharif, F.; Kim, J. K. Self-alignment and high electrical conductivity of ultralarge graphene oxide-polyurethane nanocomposites. J. Mater. Chem.2012, 22, 12709–12717.

    CAS  Google Scholar 

  34. Zhang, J. W.; Shi, G.; Jiang, C.; Ju, S.; Jiang, D. Z. 3D bridged carbon nanoring/graphene hybrid paper as a high-performance lateral heat spreader. Small2015, 11, 6197–6204.

    CAS  Google Scholar 

  35. Ronca, S.; Igarashi, T.; Forte, G.; Rastogi, S. Metallic-like thermal conductivity in a lightweight insulator: Solid-state processed ultra high molecular weight polyethylene tapes and films. Polymer2017, 123, 203–210.

    CAS  Google Scholar 

  36. Zhu, B. W.; Liu, J.; Wang, T. Y.; Han, M.; Valloppilly, S.; Xu, S.; Wang, X. W. Novel polyethylene fibers of very high thermal conductivity enabled by amorphous restructuring. ACS Omega2017, 2, 3931–3944.

    CAS  Google Scholar 

  37. Song, N.; Pan, H. D.; Hou, X. S.; Cui, S. Q.; Shi, L. Y.; Ding, P. Enhancement of thermal conductivity in polyamide-6/graphene composites via a “bridge effect” of silicon carbide whiskers. RSC Adv.2017, 7, 46306–46312.

    CAS  Google Scholar 

  38. Morsi, S. M. M.; Mohamed, H. A. A comparative study of new linear and hyperbranched polyurethanes built up from a synthesized isocyanate-terminated polyester/urethane. Polym. Bull.2017, 74, 5011–5027.

    CAS  Google Scholar 

  39. Oprea, S.; Timpu, D.; Oprea V. Design-properties relationships of polyurethanes elastomers depending on different chain extenders structures. J. Polym. Res.2019, 26, 117.

    Google Scholar 

  40. Wu, S. L.; Shi, T. J.; Zhang, L. Y. Preparation and properties of amine-functionalized reduced graphene oxide/waterborne polyurethane nanocomposites. High Perform. Polym.2015, 28, 453–465.

    Google Scholar 

  41. Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev.2018, 47, 1822–1873.

    CAS  Google Scholar 

  42. de Leon, A. C.; Alonso, L.; Mangadlao, J. D.; Advincula, R. C.; Pentzer, E. Simultaneous reduction and functionalization of graphene oxide via Ritter reaction. ACS Appl. Mater. Interfaces2017, 9, 14265–14272.

    CAS  Google Scholar 

  43. Kim, N. H.; Kuila, T.; Lee, J. H. Simultaneous reduction, functionalization and stitching of graphene oxide with ethylenediamine for composites application. J. Mater. Chem. A2013, 1, 1349–1358.

    CAS  Google Scholar 

  44. Daud, F. N.; Ahmad, A.; Haji Badri, K. An investigation on the properties of palm-based polyurethane solid polymer electrolyte. Int. J. Polym. Sci.2014, 2014, Article ID 326716.

  45. Mahmood, N.; Islam, M.; Hameed, A.; Saeed, S. Polyamide 6/multiwalled carbon nanotubes nanocomposites with modified morphology and thermal properties. Polymers2013, 5, 1380–1391.

    Google Scholar 

  46. Jiang, Z. J.; Jiang, Z. Q. Interaction induced high catalytic activities of CoO nanoparticles grown on nitrogen-doped hollow graphene microspheres for oxygen reduction and evolution reactions. Sci. Rep.2016, 6, 27081.

    CAS  Google Scholar 

  47. Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun.2015, 6, 7760.

    CAS  Google Scholar 

  48. Li, W. C.; Cui, J.; Wang, W. W.; Zheng, D. H.; Jia, L. F.; Saeed, S.; Liu, H. D.; Rupp, R.; Kong, Y. F.; Xu, J. J. P-type lithium niobate thin films fabricated by nitrogen-doping. Materials2019, 12, 819.

    CAS  Google Scholar 

  49. Matsoso, B. J.; Ranganathan, K.; Mutuma, B. K.; Lerotholi, T.; Jones, G.; Coville, N. J. Time-dependent evolution of the nitrogen configurations in N-doped graphene films. RSC Adv.2016, 6, 106914–106920.

    CAS  Google Scholar 

  50. Zhao, Y. H.; Zhang, Y. F.; Bai, S. L.; Yuan, X. W. Carbon fibre/graphene foam/polymer composites with enhanced mechanical and thermal properties. Compos. PartB: Eng.2016, 94, 102–108.

    CAS  Google Scholar 

  51. Hyun, S. K.; Ji, U. J.; Hyeseong, L.; Seong, Y. K.; Seong, H. K.; Jaewoo, K.; Yong, C. J.; Beom, J. Y. Thermal management in polymer composites: A review of physical and structural parameters. Adv. Eng. Mater.2018, 20, 1800204.

    Google Scholar 

  52. Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Prog. Polym. Sci.2016, 61, 1–28.

    CAS  Google Scholar 

  53. Zhang, X. R.; Xie, X. Y.; Cai, X. Z.; Jiang, Z. Y.; Gao, T.; Ren, Y. J.; Hu, J.; Zhang, X. X. Graphene-perfluoroalkoxy nanocomposite with high through-plane thermal conductivity fabricated by hot-pressing. Nanomaterials (Basel)2019, 9, 1320.

    CAS  Google Scholar 

  54. Feng, C. P.; Bai, L.; Shao, Y.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Chen, J.; Ni, H. Y.; Yang, W. A facile route to fabricate highly anisotropic thermally conductive elastomeric POE/NG composites for thermal management. Adv. Mater. Interfaces2018, 5, 1700946.

    Google Scholar 

  55. Chung, S. H.; Kim, H.; Jeong, S. W. Improved thermal conductivity of carbon-based thermal interface materials by high-magnetic-field alignment. Carbon2018, 140, 24–29.

    CAS  Google Scholar 

  56. Zahid, M.; Masood, M. T.; Athanassiou, A.; Bayer, I. S. Sustainable thermal interface materials from recycled cotton textiles and graphene nanoplatelets. Appl. Phys. Lett.2018, 113, 044103.

    Google Scholar 

  57. Tian, X. J.; Itkis, M. E.; Haddon, R. C. Application of hybrid fillers for improving the through-plane heat transport in graphite nanoplatelet-based thermal interface layers. Sci. Rep.2015, 5, 13108.

    CAS  Google Scholar 

  58. Qin, M. M.; Xu, Y. X.; Cao, R.; Feng, W.; Chen, L. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Adv. Funct. Mater.2018, 28, 1805053.

    Google Scholar 

  59. Yang, W. X.; Zhao, Z. D.; Wu, K.; Huang, R.; Liu, T. Y.; Jiang, H.; Chen, F.; Fu, Q. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C2017, 5, 3748–3756.

    CAS  Google Scholar 

  60. Su, Z.; Wang, H.; Ye, X. Z.; Tian, K. H.; Huang, W. Q.; Xiao, C.; Tian, X. Y. Enhanced thermal conductivity of functionalized-graphene/boron nitride flexible laminated composite adhesive via a facile latex approach. Compos. Part A: Appl. Sci. Manuf.2017, 99, 166–175.

    CAS  Google Scholar 

  61. Yao, Y. M.; Sun, J. J.; Zeng, X. L.; Sun, R.; Xu, J. B.; Wong, C. P. Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small2018, 14, 1704044.

    Google Scholar 

  62. An, F.; Li, X. F.; Min, P.; Li, H. F.; Dai, Z.; Yu, Z. Z. Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon2018, 126, 119–127.

    CAS  Google Scholar 

  63. Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev.2012, 112, 6156–6214.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nature Science Associate Foundation (NSAF) (No. U1730103) and the National Natural Science Foundation of China (NSFC) (No.11672002)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulin Bai.

Electronic Supplementary Material

12274_2020_2921_MOESM1_ESM.pdf

Enhancing through-plane thermal conductivity of fluoropolymer composite by developing in situ nano-urethane linkage at graphene—graphene interface

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maqbool, M., Guo, H., Bashir, A. et al. Enhancing through-plane thermal conductivity of fluoropolymer composite by developing in situ nano-urethane linkage at graphene—graphene interface. Nano Res. 13, 2741–2748 (2020). https://doi.org/10.1007/s12274-020-2921-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2921-7

Keywords

Navigation