Skip to main content
Log in

Elliptic classes of Schubert varieties

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We introduce new notions in elliptic Schubert calculus: the (twisted) Borisov–Libgober classes of Schubert varieties in general homogeneous spaces G/P. While these classes do not depend on any choice, they depend on a set of new variables. For the definition of our classes we calculate multiplicities of some divisors in Schubert varieties, which were only known for full flag varieties before. Our approach leads to a simple recursions for the elliptic classes. Comparing this recursion with R-matrix recursions of the so-called elliptic weight functions of Rimanyi–Tarasov–Varchenko we prove that weight functions represent elliptic classes of Schubert varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Or by \(\hbar \) in physics literature, also sometimes by y in K-theory—to match the classical notion of Hirzebruch \(\chi _y\)–genus.

  2. These extra variables are probably related with the “dynamical variables”, a.k.a. “Kähler variables” of mathematical physics literature.

  3. The proof is parallel to that of [22, \(\S \)10].

  4. The discrepancy divisor is equal to \(-D\). We do not assume that \(\Delta \) is effective.

References

  1. Aganagic, M., Okounkov, A.: Elliptic stable envelopes. arXiv:1604.00423

  2. Aluffi, P., Mihalcea, L.C., Schürmann, J., Su, C.: Shadows of characteristic cycles, Verma modules, and positivity of Chern–Schwartz–MacPherson classes of Schubert cells. arXiv:1708.08697

  3. Aluffi, P., Mihalcea, L.C., Schürmann, J., Su, C.: Motivic Chern Classes of Schubert cells, Hecke algebras, and applications to Casselman’s problem. arXiv:1902.10101

  4. Borisov, L., Libgober, A.: Elliptic genera of toric varieties and applications to mirror symmetry. Invent. Math. 140, 453–485 (2000)

    Article  MathSciNet  Google Scholar 

  5. Borisov, L., Libgober, A.: Elliptic genera of singular varieties. Duke Math. J. 116(2), 319–351 (2003)

    Article  MathSciNet  Google Scholar 

  6. Borisov, L., Libgober, A.: McKay correspondence for elliptic genera. Ann. Math. (2) 161(3), 1521–1569 (2005)

  7. Bourbaki, N.: Groupes et Algèbres de Lie, Chap. 4–6. Hermann, Paris (1981)

  8. Bressler, P., Evens, S.: The Schubert calculus, braid relations, and generalized cohomology. Trans. Am. Math. Soc. 317(2), 799–811 (1990)

    Article  MathSciNet  Google Scholar 

  9. Brion, M., Kumar, S.: Frobenius Splitting Methods in Geometry and Representation Theory. Progress in Mathematics, 231. Birkhäuser Boston, Inc., Boston, MA (2005)

  10. Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Modern Birkhäuser Classics. Birkhäuser Boston, 1997 (2009)

  11. Fehér, L., Rimányi, R.: Chern–Schwartz–MacPherson classes of degeneracy loci. Geometry Topol. 22, 3575–3622 (2018)

    Article  MathSciNet  Google Scholar 

  12. Felder, G., Rimányi, R., Varchenko, A.: Elliptic dynamical quantum groups and equivariant elliptic cohomology. SIGMA 14, 132, 41 pages (2018)

  13. Fehér, L.M., Rimányi, R., Weber, A.: Motivic Chern classes and K-theoretic stable envelopes. In: Proceedings of the London Mathematical Society 2020. arXiv:1802.01503 (to appear)

  14. Fehér, L.M., Rimányi, R., Weber, A.: Characteristic classes of orbit stratifications, the axiomatic approach. In: Schubert Calculus and its applications in combinatorics and representation theory. Proceedings of the international conference in Schubert Calculus in Guangzhou, China, Springer. arXiv:1811.11467 (to appear)

  15. Ganter, N., Ram, A.: Generalized Schubert calculus. J. Ramanujan Math. Soc. 28(A), 1–42 (2013)

  16. Ganter, N.: The elliptic Weyl character formula. Compos. Math. 150(7), 1196–1234 (2014)

    Article  MathSciNet  Google Scholar 

  17. Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer, New York (1977)

  18. Jantzen, J.C.: Representations of algebraic groups. Second edition. Mathematical Surveys and Monographs, 107. American Mathematical Society, Providence, RI (2003)

  19. Kempf, G.R.: Linear systems on homogeneous spaces. Ann. Math. (2) 103, 557–591 (1976)

  20. Kovács, S.J.: Singularities of stable varieties. Handbook of moduli. Vol. II, 159-203, Advanced Lecture Mathematis (ALM), 25, Int. Press, Somerville, MA (2013)

  21. Kumar, S.: Kac-Moody groups, their flag varieties and representation theory. Progress in Mathematics, 204. Birkhäuser Boston, Inc., Boston, MA (2002)

  22. Kumar, S.: Positivity in \(T\)-equivariant \(K\)-theory of flag varieties associated to Kac-Moody groups (with an Appendix by M. Kashiwara). J. Eur. Math. Soc. 19, 2469–2519 (2017)

  23. Kumar, S., Narasimhan, M.S.: Picard group of the moduli spaces of G-bundles. Math. Ann. 308(1), 155–173 (1997)

    Article  MathSciNet  Google Scholar 

  24. Landweber, P.S.: Elliptic genera: an introductory overview, in P. S. Landweber, Elliptic Curves and Modular Forms in Algebraic Topology. Lecture Notes in Mathematics, 1326, Springer, Berlin, pp. 1–10 (1988)

  25. Lenart, C., Zainoulline, K.: A Schubert basis in equivariant elliptic cohomology. N Y J. Math. 23(2017), 711–737 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Maulik, D., Okounkov, A.: Quantum Groups and Quantum Cohomology, Astérisque No. 408 (2019)

  27. Mikosz, M., Weber, A.: Elliptic classes, McKay correspondence and Theta identities. arXiv:1909.07303

  28. Okounkov, A.: Lectures on K-theoretic computations in enumerative geometry. Geometry of moduli spaces and representation theory, 251–380, IAS/Park City Math. Ser., 24, AMS (2017)

  29. Rimányi, R.: Thom polynomials, symmetries and incidences of singularities. Invent. Math. 143, 499–521 (2001)

    Article  MathSciNet  Google Scholar 

  30. Rimanyi, R., Tarasov, V., Varchenko, A.: Partial flag varieties, stable envelopes and weight functions. Quant. Topol. 6(2), 333–364 (2015)

    Article  MathSciNet  Google Scholar 

  31. Rimanyi, R., Tarasov, V., Varchenko, A.: Trigonometric weight functions as K-theoretic stable envelope maps for the cotangent bundle of a flag variety. J. Geom. Phys. 94, 81–119 (2015)

    Article  MathSciNet  Google Scholar 

  32. Rimányi, R., Tarasov, V., Varchenko, A.: Elliptic and K-theoretic stable envelopes and Newton polytopes. Select. Math. 25:16, 43pp (2019)

  33. Rimányi, R., Varchenko, A.: Equivariant Chern–Schwartz–MacPherson classes in partial flag varieties: interpolation and formulae, in Schubert Varieties, Equivariant Cohomology and Characteristic Classes, IMPANGA2015 (eds. J. Buczyński, M. Michalek, E. Postingel), EMS, pp. 225–235 (2018)

  34. Rimányi, R., Weber, A.: Elliptic classes of Schubert cells via Bott–Samelson resolution. J Topol. (2020) arXiv:1904.10852 (to appear)

Download references

Acknowledgements

S.K. is supported by the NSF Grant DMS 1802328, R.R. is supported by a Simons foundation grant. A.W. is supported by the research project of the Polish National Research Center 2016/23/G/ST1/04282 (Beethoven 2, German-Polish joint project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richárd Rimányi.

Additional information

Communicated by Jean-Yves Welschinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Rimányi, R. & Weber, A. Elliptic classes of Schubert varieties. Math. Ann. 378, 703–728 (2020). https://doi.org/10.1007/s00208-020-02043-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02043-z

Navigation