Skip to main content
Log in

Synthesis and Characterization of Highly Efficient ZrO2 Nanomaterials for Electrochemical Behaviour

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The ZrO2 nanomaterial was prepared by the co-precipitation method by maintaining the pH of the reaction solution at 7, 8 and 9. The crystalline quality of the prepared material was confirmed from the powder XRD pattern and the Scherrer formula was used to calculate the particle size. The FE-SEM picture shows the morphology of the ZrO2 nanoparticles. The vibrating sample magnetometer (VSM) results give details of the magnetic nature of the synthesized materials. The samples were characterized by TGA/DTA and electrochemical performances of the samples were investigated employing cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mary Jacintha, A., Manikandan, A., Chinnaraj, K., Arul Antony, S., Neeraja, P.: Comparative studies of spinel MnFe2O4 nanostructures: structural, morphological, optical, magnetic and catalytic properties. J. Nanosci. Nanotechnol. 15, 9732–9740 (2015). https://doi.org/10.1166/jnn.2015.10343

    Article  Google Scholar 

  2. Mary, J.A., Manikandan, A., Kennedy, L.J., Bououdina, M., Sundaram, R., Vijaya, J.J.: Structure and magnetic properties of Cu-Ni alloy nanoparticles prepared by rapid microwave combustion method. Trans. Nonferrous Metals Soc. China. 24, 1467–1473 (2014). https://doi.org/10.1016/S1003-6326(14)63214-3

    Article  Google Scholar 

  3. Manikandan, A., Judith Vijaya, J., John Kennedy, L.: Structural, optical and magnetic properties of porous α-Fe2O3 nanostructures prepared by rapid combustion method. J. Nanosci. Nanotechnol. 13, 2986–2992 (2013). https://doi.org/10.1166/jnn.2013.7402

    Article  Google Scholar 

  4. Elayakumar, K., Dinesh, A., Manikandan, A., Murugesan, P., Kavitha, G., Prakash, S., Thilak Kumar, R., Jaganathan, S.K., Baykal, A.: Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 476, 157–165 (2019). https://doi.org/10.1016/j.jmmm.2018.09.089

    Article  ADS  Google Scholar 

  5. Thilagavathi, P., Manikandan, A., Sujatha, S., Jaganathan, S.K., Arul Antony, S.: Sol–gel synthesis and characterization studies of NiMoO4 nanostructures for photocatalytic degradation of methylene blue dye. Nanosci. Nanotechnol. Lett. 8, 438–443 (2016). https://doi.org/10.1166/nnl.2016.2150

    Article  Google Scholar 

  6. Grover, V., Shukla, R., Tyagi, A.K.: Facile synthesis of ZrO2 powders: control of morphology. Scr. Mater. 57, 699–702 (2007). https://doi.org/10.1016/j.scriptamat.2007.06.053

    Article  Google Scholar 

  7. Tahir, M.N., Gorgishvili, L., Li, J., Gorelik, T., Kolb, U., Nasdala, L., Tremel, W.: Facile synthesis and characterization of monocrystalline cubic ZrO2nanoparticles. Solid State Sci. 9, 1105–1109 (2007). https://doi.org/10.1016/j.solidstatesciences.2007.07.033

    Article  ADS  Google Scholar 

  8. Rozoa, C., Jaque, D., Fonseca, L.F., S, G.: Luminescence of Rare Earth-Doped Si–ZrO2 Co-Sputtered Films. J. Lumin. 128, 1197–1204 (2008). https://doi.org/10.1016/j.jlumin.2007.11.092

    Article  Google Scholar 

  9. Liang, L., Xu, Y., Wu, D., Sun, Y.: Simple sol–gel route to ZrO2 films with high optical performances. Mater. Chem. Phys. 114, 252–256 (2009). https://doi.org/10.1016/j.matchemphys.2008.09.007

    Article  Google Scholar 

  10. Bae, D.S., Kim, E.J., Park, S.W., Han, K.S.: Synthesis and characterization of nanosized ZnxMn1-x Fe2O4 powders by glycothermal. Mater. Sci. Forum. 486, 436–439 (2005). https://doi.org/10.4028/www.scientific.net/MSF.486-487.436

    Article  Google Scholar 

  11. Vasylkiv, O., Sakka, Y.: Synthesis and Colloidal Processing of Zirconia Nanopowder. J. Am. Ceram. Soc. 84, 2489–2494 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01041.x

    Article  Google Scholar 

  12. Shukla, S., Seal, S.: Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia. Int. Mater. Rev. 50(1), 45–64 (2005). https://doi.org/10.1179/174328005X14267

    Article  Google Scholar 

  13. Manikandan, A., Selvam, N.C., Kennedy, L.J., Kumar, R.T., Vijaya, J.J.: Structural and optical properties of novel ZrO2 nanostructures by microwave and solution combustion method. J. Nanosci. Nanotechnol. 4, 2595–2603 (2013). https://doi.org/10.1166/jnn.2013.7357

    Article  Google Scholar 

  14. Kumar, S., Bhunia, S., Ojha, A.K.: Effect of calcination temperature on phase transformation, structural and optical properties of sol–gel derived ZrO2nanostructures. Phys. E. 66, 74–80 (2015). https://doi.org/10.1016/j.physe.2014.09.007

    Article  Google Scholar 

  15. Purohit, R.D., Saha, S., Tyagi, A.K.: Combustion synthesis of nanocrystalline ZrO2 powder: XRD, Raman spectroscopy and TEM studies. Mater. Sci. Eng. B. 130, 57–60 (2006). https://doi.org/10.1016/j.mseb.2006.02.041

    Article  Google Scholar 

  16. Ray, J.C., Pramanik, P., Ram, S.: Formation of Cr3+ stabilized ZrO2 nanocrystals in a single cubic metastable phase by a novel chemical route with a sucrose–polyvinyl alcohol polymer matrix. Mater. Lett. 48, 281–291 (2001). https://doi.org/10.1016/S0167-577X(00)00316-5

    Article  Google Scholar 

  17. Tietz, L.A., Carter, C.B., Lathrop, D.K., Russek, S.E., Buhrman, R.A., Michael, J.R.: Crystallography of YBa2Cu3O6+x thin film-substrate interfaces. J. Mater. Res. 4, 1072–1081 (1989). https://doi.org/10.1557/JMR.1989.1072

    Article  ADS  Google Scholar 

  18. Kambur, A., Pozan, G.S., Boz, I.: Preparation, characterization and photocatalytic activity of TiO2–ZrO2 binary oxide nanoparticles. Appl. Catal. B Environ. 115–116. 115-116, 149–158 (2012). https://doi.org/10.1016/j.apcatb.2011.12.012

    Article  Google Scholar 

  19. Hu, C.C., Huang, Y.H.: Effects of preparation variables on the deposition rate and physicochemical properties of hydrous ruthenium oxide for electrochemical capacitors. Electrochim. Acta. 46, 3431–3444 (2001). https://doi.org/10.1016/S00134686(1)00453-6

    Article  Google Scholar 

  20. Jeong, G.H., Lee, H.-M., Kang, J.-G., Lee, H., Kim, C.-K., Lee, J.-H., Kim, J.-H., Kim, S.-W.: ZrO2–SiO2 nanosheets with ultrasmall WO3 nanoparticles and their enhanced pseudocapacitance and stability. ACS Appl. Mater. Interfaces. 6, 20171–20178 (2014). https://doi.org/10.1021/am505747w

    Article  Google Scholar 

  21. Manikandan, A., Durka, M., Antony, S.A.: A novel synthesis, structural, morphological, and opto-magnetic characterizations of magnetically separable spinel CoxMn1−x Fe2O4 (0≤ x ≤1)nano-catalysts. J. Supercond. Nov. Magn. 27, 2841–2857 (2014). https://doi.org/10.1007/s10948-014-2771-1

    Article  Google Scholar 

  22. Manikandan, A., Sridhar, R., Arul Antony, S., Ramakrishna, S.: A simple aloe vera plant-extracted microwave and conventional combustion synthesis: morphological, optical, magnetic and catalytic properties of CoFe2O4 nanostructures. J. Mol. Struct. 1076, 188–200 (2014). https://doi.org/10.1016/j.molstruc.2014.07.054

    Article  ADS  Google Scholar 

  23. Silambarasu, A., Manikandan, A., Balakrishnan, K.: Room-temperature superparamagnetism and enhanced photocatalytic activity of magnetically reusable spinel ZnFe2O4 nanocatalysts. J. Supercond. Nov. Magn. 30, 2631–2640 (2017). https://doi.org/10.1007/s10948-017-4061-1

    Article  Google Scholar 

  24. Manikandan, A., Durka, M., Seevakan, K., Arul Antony, S.: A novel one-pot combustion synthesis and opto-magnetic properties of magnetically separable spinel MnxMg1 − xFe2O4 (0.0 ≤ x ≤ 0.5) nanophotocatalysts. J. Supercond. Nov. Magn. 28, 1405–1416 (2015). https://doi.org/10.1007/s10948-014-2864-x

    Article  Google Scholar 

  25. Barathiraja, C., Manikandan, A., Uduman Mohideen, A.M., Jayasree, S., Arul Antony, S.: Magnetically recyclable spinel MnxNi1−xFe2O4 (x=0.0 – 0.5) nano-photocatalysts: structural, morphological and opto-magnetic properties. J. Supercond. Nov. Magn. 29, 477–486 (2016). https://doi.org/10.1007/s10948-015-3312-2

    Article  Google Scholar 

  26. Hema, E., Manikandan, A., Karthika, P., Arul Antony, S., Venkatraman, B.R.: A novel synthesis of Zn2+−doped CoFe2O4 spinel nanoparticles: structural, morphological, opto-magnetic and catalytic properties. J. Supercond. Nov. Magn. 28, 2539–2552 (2015). https://doi.org/10.1007/s10948-015-3054-1

    Article  Google Scholar 

  27. Selvam, N.C.S., Manikandan, A., Kennedy, L.J., Vijaya, J.J.: Comparative investigation of zirconium oxide (ZrO2) nano and microstructure for structural, optical and photocatalytic properties. J. Colloid Interface Sci. 389, 91–98 (2013) 10.1016.j.jcis.2012.09.014

    Article  ADS  Google Scholar 

  28. Singh, A.K., Viswanath, V., Janu, V.C.: Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles. J. Lumin. 129(8), 874–878 (2009). https://doi.org/10.1016/j.jlumin.2009.03.027

    Article  Google Scholar 

  29. Singh, A.K., Nakate, U.T.: Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia. Sci. World J. 2014(1), 349457 (2014). https://doi.org/10.1155/2014/349457

    Article  Google Scholar 

  30. Ning, S., Zhan, P., Xie, Q., Li, Z., Zhang, Z.: Room-temperature ferromagnetism in un-doped ZrO2 thin films. J. Phys. D. Appl. Phys. 46, 445004 (2013). https://doi.org/10.1088/0022-3727/46/44/445004

    Article  ADS  Google Scholar 

  31. Kumar, S., Bhunia, S., Singh, J., Ojha, A.K.: Absence of room temperature ferromagnetism in Fe stabilized ZrO2 nano structural, optical and luminescence properties. J. Alloys Compd. 649, 348–356 (2015). https://doi.org/10.1016/j.jallcom.2015.07.077

    Article  Google Scholar 

  32. Forker, M., de la Presa, P., Hoffbauer, W., Schlabach, S., Bruns, M., Szabo, D.V.: Structure, phase transformations, and defects of HfO2 and ZrO2 nanoparticles studied by 181Ta and 111Cd perturbed angular correlations, 1H magic-angle spinning NMR, XPS and x-ray and electron diffraction. Phys. Rev. B. 77, 054108–054118 (2008). https://doi.org/10.1103/PhysRevB.77.054108

    Article  ADS  Google Scholar 

  33. Zippel, J., Lorenz, M., Setzer, A., Wagner, G., Sobolev, N., Esquinazi, P., Grundmann, M.: Defect-induced ferromagnetism in undoped and Mn-doped zirconia thin films. Phys. Rev. B. 82, 125209–125205 (2010). https://doi.org/10.1103/PhysRevB.82.125209

    Article  ADS  Google Scholar 

  34. Dimri, M.C., Khanduri, H., Kooskora, H., Kodu, M., Jaaniso, R., Heinmaa, I., Mere, A., Krustok, J., Stern, R.: Room-temperature ferromagnetism in Ca and Mg stabilized cubic zirconia bulk samples and thin films prepared by pulsed laser deposition. J. Phys. D. Appl. Phys. 45, 475003 (2012). https://doi.org/10.1088/0022-3727/45/47/475003

    Article  ADS  Google Scholar 

  35. Vadivel, M., Ramesh Babu, R., Ramamurthi, K., Arivanandhan, M.: Enhanced dielectric and magnetic properties of polystyrene added CoFe2O4 magnetic nanoparticles. J. Phys. Chem. Solids. 102, 1–11 (2017). https://doi.org/10.1016/j.jpcs.2016.10.014

    Article  ADS  Google Scholar 

  36. Muthuchudarkodi, R.R., Vedhi, C.: Preparation and electrochemical characterization of manganese dioxide-zirconia nanorods. ApplNanosci. 5, 481–491 (2015). https://doi.org/10.1007/s13204-014-0340-3

    Article  ADS  Google Scholar 

  37. Ratchagar, V., Jagannathan, K.: Effect of pH on magnetic, thermal and dielectric properties of SnO2 nanomaterials. J. Alloys Compd. 689, 1088–1095 (2016). https://doi.org/10.1016/j/jallcom.2016.08.058

    Article  Google Scholar 

  38. Majid, F., Riaz, S., Naseem, S.: Microwave-assisted sol–gel synthesis of BiFeO3 nanoparticles. J. Sol-Gel Sci. Technol. 74, 329–339 (2015). https://doi.org/10.1007/s10971-014-3477-3

    Article  Google Scholar 

  39. Riaz, S., Shah, S.M.H., Akbar, A., Atiq, S., Naseem, S.: Effect of Mn dopingon structural, dielectric and magnetic properties of BiFeO3 thin films. J. Sol-Gel Sci.Technol. 74, 310–319 (2015). https://doi.org/10.1007/s10971-014-3461-y

    Article  Google Scholar 

  40. Rose, A., Raghavan, N., Thangavel, S., Maheswari, B.U., Nair, D.P., Venugopal, G.: Investigation of cyclic voltammetry of graphene oxide/polyaniline/polyvinylidene fluoride nanofibers prepared via electrospinning. Mater. Sci. Semicond. Process. 31, 281–286 (2015). https://doi.org/10.1016/j.mssp.2014.10.051

    Article  Google Scholar 

  41. Shou, Q., Cheng, J., Zhang, L., Nelson, B.J., Zhang, X.: Synthesis and characterization of a nanocomposite of goethite nanorods and reduced graphene oxide for electrochemical capacitors. J. Solid State Chem. 185, 191–197 (2012). https://doi.org/10.1016/j.jssc.2011.11.020

    Article  ADS  Google Scholar 

  42. Nathan, D.M.G.T., Boby, S.J.M.: Hydrothermal preparation of hematite nanotubes/reduced graphene oxide nanocomposites as electrode material for high performance supercapacitors. J. Alloys Compd. 700, 67–74 (2017). https://doi.org/10.1016/j.jallcom.2017.01.070

    Article  Google Scholar 

  43. Choi, B.G., Yang, M., Hong, W.H., Choi, J.W., Huh, Y.S.: 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano. 6, 4020–4028 (2012). https://doi.org/10.1021/nn3003345

    Article  Google Scholar 

Download references

Acknowledgments

The authors convey the heartfelt gratitude to the management of SRM IST for their motivation and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jagannathan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratchagar, V., Jagannathan, K. Synthesis and Characterization of Highly Efficient ZrO2 Nanomaterials for Electrochemical Behaviour. J Supercond Nov Magn 33, 3433–3441 (2020). https://doi.org/10.1007/s10948-020-05592-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05592-1

Keywords

Navigation