Skip to main content
Log in

Three-Dimensional Fractal Characterization of Concrete Surface Subjected to Sulfuric Acid Attacks

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Sulfuric acid corrosion on concrete structures is more prevalent and its damage evaluation becomes gradually imperative. This study attempts to characterize the sulfuric acid corroded surfaces of concrete in terms of three-dimensional fractal dimension. Accelerated sulfuric acid corrosion tests were conducted using concrete cylinders with six different corrosion durations, and the 3D coordinates of points on the surface of cylinders were captured using 3D laser scanning technique. The fractal dimensions were calculated using the cubic covering method, and the corrosion depth and mass loss of concrete were obtained correspondingly. The results indicated that fractal dimension can be considered as an indicator to evaluate the corrosion deterioration. The surface fractal dimension was positively correlated with the corrosion duration by a power function, where the value increased dramatically in the early stage, and gradually slowed down to maintain constant. Therefore, empirical functions to evaluate the corrosion depth and mass loss of concrete after sulfuric acid attacks were proposed. The parameters to establish the equivalent accelerated relation between experimental and natural conditions were also recommended under different degradation degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Huber, B., Hilbig, H., Drewes, J.E., Müller, E.: Evaluation of concrete corrosion after short- and long-term exposure to chemically and microbially generated sulfuric acid. Cem. Concr. Res. 94, 36–48 (2017). https://doi.org/10.1016/j.cemconres.2017.01.005

    Article  Google Scholar 

  2. Allahverdi, A., Skvara, F.: Sulfuric acid attack on hardened paste of geopolymer cements—Part 1. Mechanism of corrosion at relatively high concentrations. Ceram. Silik. 49(4), 225 (2005). https://www.irsm.cas.cz/materialy/cs_content/2005/Allahverdi_CS_2005_0000.pdf

  3. Xiao, J., Qu, W., Li, W., Zhu, P.: Investigation on effect of aggregate on three non-destructive testing properties of concrete subjected to sulfuric acid attack. Constr. Build. Mater. 115, 486–495 (2016). https://doi.org/10.1016/j.conbuildmat.2016.04.017

    Article  Google Scholar 

  4. Mahdikhani, M., Bamshad, O., Shirvani, M.F.: Mechanical properties and durability of concrete specimens containing nano silica in sulfuric acid rain condition. Constr. Build. Mater. 167, 929–935 (2018). https://doi.org/10.1016/j.conbuildmat.2018.01.137

    Article  Google Scholar 

  5. Fan, Y., Hu, Z., Zhang, Y., Liu, J.: Deterioration of compressive property of concrete under simulated acid rain environment. Constr. Build. Mater. 24(10), 1975–1983 (2010). https://doi.org/10.1016/j.conbuildmat.2010.04.002

    Article  Google Scholar 

  6. Bassuoni, M.T., Nehdi, M.L.: Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction. Cem. Concr. Res. 37(7), 1070–1084 (2007). https://doi.org/10.1016/j.cemconres.2007.04.014

    Article  Google Scholar 

  7. Gutierrez-Padilla, M.G.D., Bielefeldt, A., Ovtchinnikov, S., Hernandez, M., Silverstein, J.: Biogenic sulfuric acid attack on different types of commercially produced concrete sewer pipes. Cem. Concr. Res. 40(2), 293–301 (2010). https://doi.org/10.1016/j.cemconres.2009.10.002

    Article  Google Scholar 

  8. Li, X., Lin, X., Lin, K., Ji, T.: Study on the degradation mechanism of sulphoaluminate cement sea sand concrete eroded by biological sulfuric acid. Constr. Build. Mater. 157, 331–336 (2017). https://doi.org/10.1016/j.conbuildmat.2017.08.172

    Article  Google Scholar 

  9. Girardi, F., Di Maggio, R.: Resistance of concrete mixtures to cyclic sulfuric acid exposure and mixed sulfates: effect of the type of aggregate. Cem. Concr. Compos. 33(2), 276–285 (2011). https://doi.org/10.1016/j.cemconcomp.2010.10.015

    Article  Google Scholar 

  10. De Belie, N., Monteny, J., Beeldens, A., Vincke, E., Van Gemert, D., Verstraete, W.: Experimental research and prediction of the effect of chemical and biogenic sulfuric acid on different types of commercially produced concrete sewer pipes. Cem. Concr. Res. 34(12), 2223–2236 (2004). https://doi.org/10.1016/j.cemconres.2004.02.015

    Article  Google Scholar 

  11. Hasan, M.S., Setunge, S., Law, D.W., Molyneaux, T.C.K.: Predicting life expectancy of concrete septic tanks exposed to sulfuric acid attack. Mag. Concr. Res. 65(13), 793–801 (2013). https://doi.org/10.1680/macr.12.00231

    Article  Google Scholar 

  12. Pavlik, V.: Corrosion of hardened cement paste by acetic and nitric acids part I: Calculation of corrosion depth. Cem. Concr. Res. 24(3), 551–562 (1994). https://doi.org/10.1016/0008-8846(94)90144-9

    Article  Google Scholar 

  13. Bertron, A., Duchesne, J., Escadeillas, G.: Accelerated tests of hardened cement pastes alteration by organic acids: analysis of the pH effect. Cem. Concr. Res. 35(1), 155–166 (2005). https://doi.org/10.1016/j.cemconres.2004.09.009

    Article  Google Scholar 

  14. Monteny, J., De Belie, N., Vincke, E., Verstraete, W., Taerwe, L.: Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete. Cem. Concr. Res. 31(9), 1359–1365 (2001). https://doi.org/10.1016/S0008-8846(01)00565-8

    Article  Google Scholar 

  15. Mahmoodian, M., Alani, A.M.: Effect of Temperature and Acidity of Sulfuric Acid on Concrete Properties. J. Mater. Civ. Eng. 29(10), 04017154 (2017). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002002

    Article  Google Scholar 

  16. Hewayde, E., Nehdi, M.L., Allouche, E., Nakhla, G.: Using concrete admixtures for sulphuric acid resistance. Proc. ICE-Constr. Mater. 160(1), 25–35 (2007). https://doi.org/10.1680/coma.2007.160.1.25

    Article  Google Scholar 

  17. Chang, Z.T., Song, X.J., Munn, R., Marosszeky, M.: Using limestone aggregates and different cements for enhancing resistance of concrete to sulphuric acid attack. Cem. Concr. Res. 35(8), 1486–1494 (2005). https://doi.org/10.1016/j.cemconres.2005.03.006

    Article  Google Scholar 

  18. Nnadi, E.O., Lizarazo-Marriaga, J.: Acid corrosion of plain and reinforced concrete sewage systems. J. Mater. Civ. Eng. 25(9), 1353–1356 (2013). https://doi.org/10.1061/(asce)mt.1943-5533.0000641

    Article  Google Scholar 

  19. Shen, Y., Wang, Y., Yang, Y., Sun, Q., Luo, T., Zhang, H.: Influence of surface roughness and hydrophilicity on bonding strength of concrete-rock interface. Constr. Build. Mater. 213, 156–166 (2019). https://doi.org/10.1016/j.conbuildmat.2019.04.078

    Article  Google Scholar 

  20. Mohamad, M., Ibrahim, I., Abdullah, R., Rahman, A.A., Kueh, A., Usman, J.: Friction and cohesion coefficients of composite concrete-to-concrete bond. Cem. Concr. Compos. 56, 1–14 (2015). https://doi.org/10.1016/j.cemconcomp.2014.10.003

    Article  Google Scholar 

  21. Issa, M.A., Issa, M.A., Islam, M.S., Chudnovsky, A.: Fractal dimension––a measure of fracture roughness and toughness of concrete. Eng. Fract. Mech. 70(1), 125–137 (2003). https://doi.org/10.1016/S0013-7944(02)00019-X

    Article  Google Scholar 

  22. De Belie, N., Verschoore, R., Van Nieuwenburg, D.: Resistance of concrete with limestone sand or polymer additions to feed acids. Trans. ASAE 41(1), 227–233 (1998). https://doi.org/10.13031/2013.17155

    Article  Google Scholar 

  23. Santos, P., Júlio, E.N.B.S.: A state-of-art review on roughness quantification methods for concrete surfaces. Constr. Build. Mater. 38(1), 912–923 (2013). https://doi.org/10.1016/j.conbuildmat.2012.09.045

    Article  Google Scholar 

  24. De Belie, N., Monteny, J., Taerwe, L.: Apparatus for accelerated degradation testing of concrete specimens. Mater. Struct. 35(251), 427–433 (2002). https://doi.org/10.1007/BF02483147

    Article  Google Scholar 

  25. Gruyaert, E., Van den Heede, P., Maes, M., De Belie, N.: Investigation of the influence of blast-furnace slag on the resistance of concrete against organic acid or sulphate attack by means of accelerated degradation tests. Cem. Concr. Res. 42(1), 173–185 (2012). https://doi.org/10.1016/j.cemconres.2011.09.009

    Article  Google Scholar 

  26. Majumdar, A., Tien, C.: Fractal characterization and simulation of rough surfaces. Wear 136(2), 313–327 (1990). https://doi.org/10.1016/0043-1648(90)90154-3

    Article  Google Scholar 

  27. Zhang, C., Chen, Y., Yao, W.: The use of fractal dimensions in the prediction of residual fatigue life of pre-corroded aluminum alloy specimens. Int. J. Fatigue. 59, 282–291 (2014). https://doi.org/10.1016/j.ijfatigue.2013.08.008

    Article  Google Scholar 

  28. Mandelbrot, B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension. Sci. 156(3775), 636–638 (1967). https://doi.org/10.1126/science.156.3775.636

    Article  Google Scholar 

  29. Zhou, H., Xie, H.: Direct estimation of the fractal dimensions of a fracture surface of rock. Surf. Rev. Lett. 10(05), 751–762 (2003). https://doi.org/10.1142/S0218625X03005591

    Article  Google Scholar 

  30. Lin, N., Guo, J., Xie, F., Zou, J., Tian, W., Yao, X., Zhang, H., Tang, B.: Comparison of surface fractal dimensions of chromizing coating and P110 steel for corrosion resistance estimation. Appl. Surf. Sci. 311, 330–338 (2014). https://doi.org/10.1016/j.apsusc.2014.05.062

    Article  Google Scholar 

  31. Liang, C., Zhang, W.: Fractal characteristic of pits distribution on 304 stainless steel corroded surface and its application in corrosion diagnosis. J. Wuhan Univ. Technol. Mater. Sci. Ed. 22(3), 389–393 (2007). https://doi.org/10.1007/s11595-006-3389-3

    Article  Google Scholar 

  32. Xu, Y.D., Qian, C.X.: Fractal characterization of corroded surface profile in reinforcing steel bars. Adv. Mater. Res. 163–167, 3118–3121 (2011). https://doi.org/10.4028/www.scientific.net/AMR.163-167.3118

    Article  Google Scholar 

  33. Chen, X., Zhou, J., Ding, N.: Fractal characterization of pore system evolution in cementitious materials. KSCE J. Mater. Civ. Eng. 19(3), 719–724 (2015). https://doi.org/10.1007/s12205-013-0320-2

    Article  Google Scholar 

  34. Xie, H., Wang, J., Xie, W.: Fractal effects of surface roughness on the mechanical behavior of rock joints. Chaos Soliton Fract. 8(2), 221–252 (1997). https://www.paper.edu.cn/scholar/showpdf/OUD2gN2IMTz0UxeQh

  35. Yang, X., Zhang, R., Ma, S., Yang, X., Wang, F.: Fractal dimension of concrete meso-structure based on X-ray computed tomography. Powder Technol. 350, 91–99 (2019). https://doi.org/10.1016/j.powtec.2019.03.003

    Article  Google Scholar 

  36. Liu, T., Zhang, X., Li, Z., Chen, Z.: Research on the homogeneity of asphalt pavement quality using X-ray computed tomography (CT) and fractal theory. Constr. Build. Mater. 68, 587–598 (2014). https://doi.org/10.1016/j.conbuildmat.2014.06.046

    Article  Google Scholar 

  37. Liu, W., Li, Y., Chen, Q., He, X.: Accelerated corrosion environmental spectrums for testing surface coatings of critical areas of flight aircraft structures. J. Beijing Univ. Aeronaut. Astronaut. 28(1), 109–112 (2002). https://doi.org/10.13700/j.bh.1001-5965.2002.01.028

    Article  Google Scholar 

  38. Li, X., Wang, X., Ren, H., Chen, Y., Mu, Z.: Effect of prior corrosion state on the fatigue small cracking behaviour of 6151–T6 aluminum alloy. Corros. Sci. 55, 26–33 (2012). https://doi.org/10.1016/j.corsci.2011.09.025

    Article  Google Scholar 

  39. Jiang, X., Yang, X.: Review on the research methods of equivalent accelerated relationship in accelerated corrosion. Equip. Environ. Eng. 11(6), 50–58 (2014). https://en.cnki.com.cn/Article_en/CJFDTOTAL-JSCX201406012.htm

  40. ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary (2011)

  41. Zhang, W., Zhou, B., Gu, X., Dai, H.: Probability distribution model for cross-sectional area of corroded reinforcing steel bars. J. Mater. Civ. Eng. 26(5), 822–832 (2013). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000888

    Article  Google Scholar 

  42. Kim, M.K., Sohn, H., Chang, C.C.: Active dimensional quality assessment of precast concrete using 3D laser scanning. Comput. Civ. Eng. 44, 622–628 (2014). https://doi.org/10.1061/9780784413029.078

    Article  Google Scholar 

  43. Matlab, R. Version 8.1. 0.604 (R2013a). Natrick, Massachusetts: The MathWorks Inc. (2013)

  44. Panchenko, Y.M., Marshakov, A., Igonin, T., Kovtanyuk, V., Nikolaeva, L.: Long-term forecast of corrosion mass losses of technically important metals in various world regions using a power function. Corros. Sci. 88, 306–316 (2014). https://doi.org/10.1016/j.corsci.2014.07.049

    Article  Google Scholar 

  45. Monteny, J., Vincke, E., Beeldens, A., De Belie, N., Taerwe, L., Van Gemert, D., Verstraete, W.: Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete. Cem. Concr. Res. 30(4), 623–634 (2000). https://doi.org/10.1016/S0008-8846(00)00219-2

    Article  Google Scholar 

  46. Ji, Y., Yuan, Y., Shen, J., Ma, Y., Lai, S.: Comparison of concrete carbonation process under natural condition and high CO2 concentration environments. J. Wuhan Univ. Technol. Mater. Sci. 25(3), 515–522 (2010). https://doi.org/10.1007/s11595-030-0034-y

    Article  Google Scholar 

  47. Neves, R., Branco, F., De Brito, J.: Field assessment of the relationship between natural and accelerated concrete carbonation resistance. Cem. Concr. Compos. 41, 9–15 (2013). https://doi.org/10.1007/s11595-030-0034-y

    Article  Google Scholar 

  48. Gutberlet, T., Hilbig, H., Beddoe, R.: Acid attack on hydrated cement—effect of mineral acids on the degradation process. Cem. Concr. Res. 74, 35–43 (2015). https://doi.org/10.1016/j.cemconres.2015.03.011

    Article  Google Scholar 

  49. Lloyd, R.R., Provis, J.L., van Deventer, J.S.J.: Acid resistance of inorganic polymer binders. 1. Corrosion rate. Mater. Struct. 45(1–2), 1–14 (2012). https://doi.org/10.1617/s11527-011-9744-7

    Article  Google Scholar 

  50. Feng, L., Wang, J.: Fractal simulation of gear tooth surface. J. Mech. Transm. 38(2), 49–53 (2014). https://doi.org/10.16578/j.issn.1004.2539.2014.02.014

    Article  Google Scholar 

  51. Ma, X., Qiu, X.: Experimental research on corrosion rules of concrete and reinforced concrete buried in acid soil. China Concr. Cem. Prod. 2, 9–13 (2000). https://doi.org/10.3969/j.issn.1000-4637.2000.02.003

    Article  Google Scholar 

  52. Ma, X., Leng, F., Qiu, X.: Experimental studies on concrete materials in corrosive soil environment. Proc. Concr. Struct. Durability Des. Constr. 143–157 (2004). https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY200400006007.htm

Download references

Acknowledgements

The authors are appreciated for the financial support provided by the National Natural Science Foundation of China with Grant No. 51678430, the National Natural Science Foundation of China with No. 51808133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Qu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Qu, W., Jiang, H. et al. Three-Dimensional Fractal Characterization of Concrete Surface Subjected to Sulfuric Acid Attacks. J Nondestruct Eval 39, 57 (2020). https://doi.org/10.1007/s10921-020-00689-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-020-00689-y

Keywords

Navigation