Skip to main content
Log in

On Ve-Degree and Ev-Degree Based Topological Properties of Single Walled Titanium Dioxide Nanotube

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The complex network models have been widely used to understand mathematical characteristics of Titanium Dioxide Nanotube. Titanium Dioxide Nanotube is a well-known semiconductor and has several industrial and scientific applications. A nanostructure belong to a significant and an extensively investigated compounds in chemical science. It has been derived through engineering mechanism at the molecular scale. The most significant of these new materials are single-walled Titanium Dioxide Nanotube (SWTNT). They have remarkable electronic properties and many other unique characteristics. To compute and study topological indices of nanostructures is a respected problem in nanotechnology. Quantitative structure-property and structure-activity relationships of the single-walled Titanium Dioxide Nanotube (SWTNT) compounds necessitate expressions for the molecular topological features of these compounds. Topological indices are vital devices for investigating chemical compounds to comprehend the fundamental topology of chemical structures. Ev-degree and ve-degree based topological indices are two novel degrees based indices as of late defined in graph theory. Ev-degree and ve-degree based topological indices have been defined as corresponding to their relating partners. In this paper, we have computed topological indices based on ev-degree and ve-degree for the two dimensional lattice of three-layered single-walled Titanium Dioxide Nanotube (SWTNT).

Graphic Abstract

Titanium nanotube is a well-known semiconductor and has several industrial and scientific applications. A nanostructure belong to a significant and an extensively investigated compounds in chemical science. It has been derived through engineering mechanism at the molecular scale. Quantitative structure-property and structure-activity relationships of the single-walled Titanium nanotubes (SWTNT) compounds necessitate expressions for the molecular topological features of these compounds. Ev-degree and ve-degree based topological indices have been defined as corresponding to their relating partners. In this paper, we have computed topological indices based on ev-degree and ve-degree for the two dimensional lattice of three-layered single-walled Titanium nanotubes (SWTNT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Shao, P. Wu, X. Zhang, D. Dimitrov and J. B. Liu (2018). IEEE Access 6, 27604–27616.

    Article  Google Scholar 

  2. Z. Shao, P. Wu, Y. Gao, I. Gutman and X. Zhang (2017). Appl. Math. Comput. 315, 298–312.

    Google Scholar 

  3. C. A. Grimes and K. G. Mor TIO2 Nanotube Arrays: Synthesis, Properties, and Applications (Springer Science & Business Media, Berlin, 2009).

    Book  Google Scholar 

  4. L. Menon, et al. (2012). J. Nanosci. Nanotechnol. 12, 7658–7676.

    Article  CAS  Google Scholar 

  5. D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams (2008). Nature 453, 80–93.

    Article  CAS  Google Scholar 

  6. L. Zhong (2012). Appl. Math. Lett. 25, (3), 561–566.

    Article  Google Scholar 

  7. M. Chellali, T. W. Haynes, S. T. Hedetniemi and T. M. Lewis (2017). Discrete Math. 340, (2), 31–38.

    Article  Google Scholar 

  8. B. Horoldagva, K. C. Das and T. A. Selenge (2019). Discrete Optim. 31, 1–7.

    Article  Google Scholar 

  9. S. Ediz (2017). Celal Bayar Univ. J. Sci. 13, (3), 615–618.

    Google Scholar 

  10. B. Sahin and S. Ediz (2018). Iran. J. Math. Chem. 9, (4), 263–277.

    Google Scholar 

  11. S. Ediz (2018). Int. J. Comput. Sci. Math. 9, (1), 1–12.

    Article  Google Scholar 

  12. H. Wiener (1947). J. Am. Chem. Soc. 69, (1), 17–20.

    Article  CAS  Google Scholar 

  13. I. Gutman and N. Trinajsti (1972). Chem. Phys. Lett. 17, (4), 535–538.

    Article  CAS  Google Scholar 

  14. S. Ediz, M. R. Farahani and M. Imran (2017). Int. J. Adv. Biotechnol. Res. 8, (4), 277–282.

    CAS  Google Scholar 

  15. S. Ediz (2017). Int. J. Syst. Sci. Appl. Math. 2, (5), 87–98.

    Article  Google Scholar 

  16. M. S. Anjum and M. U. Safdar (2019). Eng. Appl. Sci. Lett. 21, 19–37.

    Article  Google Scholar 

  17. Z. Shao, M. K. Siddiqui and M. H. Muhammad (2018). Symmetry 10, (7), 244–260.

    Article  CAS  Google Scholar 

  18. Z. Shao, et al. (2019). Eng. Appl. Sci. Lett. 2, (1), 1–11.

    Article  Google Scholar 

  19. A. U. R. Virk, M. N. Jhangeer and M. A. Rehman (2018). Eng. Appl. Sci. Lett. 1, (2), 37–50.

    Article  Google Scholar 

  20. W. Gao, M. Asif and W. Nazeer (2018). Open J. Math. Anal. 2, (2), 10–26.

    Article  Google Scholar 

  21. M. Munir, et al. (2016). Symmetry 97, 1–15.

    Google Scholar 

  22. Y. C. Nah, I. Paramasivam and P. Schmuki (2010). ChemPhysChem 11, 2698–2713.

    Article  CAS  Google Scholar 

  23. A. Raheem, et al. (2019). J. Inform. Optim. Sci. 14, 1–11.

    Google Scholar 

  24. D. Mardare and P. Hones (1999). Mater. Sci. Eng. B 68, 42–47.

    Article  Google Scholar 

  25. D. V. Bavykin, J. M. Friedrich and F. C. Walsh (2006). Adv. Mater. 18, 2807–2824.

    Article  CAS  Google Scholar 

  26. Y. Li, et al. (2004). Chem. Phys. Lett. 389, 124–128.

    Article  CAS  Google Scholar 

  27. J. Zhao, et al. (2005). Nanotechnology 16, 24–50.

    Article  CAS  Google Scholar 

  28. J.-B. Liu, C. Wang, S. Wang and Bing Wei (2019). Bull. Malays. Math. Sci. Soc. 42, 67–78.

    Article  CAS  Google Scholar 

  29. M. Baa, et al. (2015). Can. J. Chem. 93, (10), 1157–1160.

    Article  CAS  Google Scholar 

  30. W. Gao, M. R. Farahani and M. R. Rajesh Kanna (2016). Open J. Discrete Math. 6, (2), 82–88.

    Article  Google Scholar 

  31. J.-B. Liu, J. Zhao, J. Min and J. D. Cao (2019). Fractals 27, (8), 19–35.

    Google Scholar 

  32. W. Gao and M. R. Farahani (2017). J. Interdiscipl. Math. 20, (5), 1341–8.

    Article  Google Scholar 

  33. A. W. Bharati Rajan, C. Grigorious and S. Stephen (2012). J. Comput. Math. Sci. 3, (5), 498–556.

    Google Scholar 

  34. M. Randic (1975). J. Am. Chem. Soc. 97, (23), 6609–6615.

    Article  CAS  Google Scholar 

  35. I. Gutman, B. Ruscic, N. Trinajsti and C. F. Wilcox Jr. (1975). J. Chem. Phys. 62, (9), 3399–3405.

    Article  CAS  Google Scholar 

  36. J.-B. Liu, J. Zhao, H. He and Z. Shao (2019). J. Stat. Phys. 177, 1131–1147.

    Article  Google Scholar 

  37. W. Gao, M. K. Siddiqui, M. Naeem and N. A. Rehman (2017). Molecules 22, (9), 1496–1510.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks the two anonymous reviewers for their very constructive comments that helped us to enhance the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Kamran Siddiqui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Siddiqui, M.K., Rauf, A. et al. On Ve-Degree and Ev-Degree Based Topological Properties of Single Walled Titanium Dioxide Nanotube. J Clust Sci 32, 821–832 (2021). https://doi.org/10.1007/s10876-020-01842-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01842-3

Keywords

Mathematics Subject Classification

Navigation