Skip to main content
Log in

Biosynthesis of Silver Nanoparticles using Borago officinslis leaf extract, characterization and larvicidal activity against cotton leaf worm, Spodoptera littoralis (Bosid)

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Silver nanoparticles (Ag NPs) was achieved by using leaf extract of Borago officinalis plant as eco-friendly reducing and capping agent. The results obtained from ultraviolet-visible spectrophotometer, dynamic light scattering, scanning & transmission electron microscopy, energy dispersive X-ray, and fourier transformed infrared confirmed the biosynthesis and the physical characterization of the produced nanoparticles. The synthesized Ag NPs was greatly more toxic to Spodoptera littoralis compared to crude extract. The LC50 values of the crude extract, and synthesized Ag NPs were 22.6 and 0.33 mg/g while LC90 values were 969.0 and 1.7 mg/g, respectively. Ag NPs and plant extract caused a significant elongation in larval period (18.02 and 18.82 days), respectively) compared with (15.78 days) in the control treatment. Whereas, there was no significant elongation in the pupal period in both males and females in case of Ag NPs and plant extract compared to the control treatment. Our results declared that the leaf crude extracts of B. officinalis and green synthesis of silver nanoparticles using it have the potential to be used as an ideal eco-friendly approach for controlling S. littoralis. This is the first report on the pesticide activity of this plant extract and its synthesized silver nanoparticles to control this insect pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abduz Zahir A, Bagavan A, Kamaraj C, Elango G, Abdul Rahuman A (2012) Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. JBiopest 5 (Supplementary):95–102

  • Afrasiabi Z, Popham HJR, Stanley D, Suresh D, Finley K, Campbell J, Kannan R, Upendran A (2016) Dietary silver nanoparticles reduce fitness in a beneficial but not pest insect species. Arch Insect Biochem Physiol 93:190–201

    CAS  PubMed  Google Scholar 

  • Al-Kalifawi EJ (2016) Green synthesis of silver nanoparticles using leaf extract of al-rawag tree (Moringa oleifera Lamarck) cultivated in Iraq and efficacy the antimicrobial activity. Mesop Environ J Spicial Issue A:39–48

  • Araj SEA, Salem NM, Ghabeish IH, Awwad AM (2015) Toxicity of nanoparticles against Drosophila melanogaster (Diptera: Drosophilidae). J Nanomater 9

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68:88–92

    CAS  PubMed  Google Scholar 

  • Basu S, Maji P, Ganguly J (2016) Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of Nyctanthes arbor-tristis. Appl Nanosci 6:1–5

    Google Scholar 

  • Bora KS, Sharma A (2011) The genus artemisia: A comprehensive review. Pharm Biol 49(1):101–109

    PubMed  Google Scholar 

  • Borei HA, El-Samahy MF, Galal OA, Thabet AF (2014) The efficiency of silica nanoparticles in control cotton leafworm, Spodoptera littoralis Boisd, (Lepidoptera: Noctuidae) in soybean under laboratory conditions. Glob J Agric Food Safety Sci 1(2):161–168

    Google Scholar 

  • Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E (2018) Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials (Basel) 8(9):681

    Google Scholar 

  • Choi O, Deng KK, Kim NJ, Ross LJr, Surampalli RY (2008) The inhibitory effects of silver nanoparticles, silver ions and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    CAS  PubMed  Google Scholar 

  • Das B, Khan MI, Jayabalan R, Behera SK, Yun SI, Tripathy SK, Mishra A (2016) Understanding the antifungal mechanism of Ag@ZnO core–shell nanocomposites against Candida krusei. Sci Rep 6(1):36403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dass AK, Mariappan P (2018) Insecticidal activity of Green Synthesized silver Nanoparticles using Coleus aromaticus and Wrightia tinctoria Leaf Extracts against Culex quinquefasciatus. Vector Biol J 3:2

    Google Scholar 

  • David WAL, Elloby S, Taylor G (1972) The Fumigant action of formaldehyde incorporated in a semisynthetic diet on the granulosis of Pieris brassicae and its evaporation from the diet. J Invertebr Pathol 19:76–82

    CAS  Google Scholar 

  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529

    PubMed  Google Scholar 

  • Du´ran N, Conti RD, Alves OL, Costa FTM, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21(6):949–959

    Google Scholar 

  • El-Aswad AF, Abdelgaleil SAM, Nakatani M (2003) Feeding deterrent and growth inhibitory properties of limonoids from Khaya senegalensis against the cotton leaf worm, Spodoptera littoralis. Pest Manag Sci 60:199–203

    Google Scholar 

  • Finney DF (1971) Probit analysis, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Fouad H, Hongjie L, Hosni D, Wei J, Abbas G, Ga’al H, Jianchu M (2018) Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cells Nanomed Biotechnol 46:558–567

    CAS  PubMed  Google Scholar 

  • Ga’al H, Fouad H, Mao G, Tian J, Jianchu M (2018) Larvicidal and pupicidal evaluation of silver nanoparticles synthesized using Aquilaria sinensis and Pogostemon cablin essential oils against dengue and zika viruses vector Aedes albopictus mosquito and its histopathological analysis. Artif Cells Nanomed Biotechnol 46:1171–1179

    PubMed  Google Scholar 

  • Gurunathan S, Lee K, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom S (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials 30(31):6341–6350

    CAS  PubMed  Google Scholar 

  • Ibrahim AMA, Ali AM, (2018) Silver and zinc oxide nanoparticles induce developmental and physiological changes in the larval and pupal stages of Spodoptera littoralis (Lepidoptera: Noctuidae). J Asia Pac Entomol 21:1373–1378

    Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650

    CAS  Google Scholar 

  • Iravani S, Zolfaghari B (2013) Green synthesis of silver nanoparticles using pinus eldaricabark extract. BioMed Res Int 639725

  • Isman MB (2006) Botanical insecticides, deterrents and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:46–66

    Google Scholar 

  • Kalimuthu K, Panneerselvam C, Chou C, Tseng LC, Murugan K, Tsai KH, Alarfaj AA, Higuchi A, Canale A, Hwang JS et al (2017) Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: Synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf Environ Prot 109:82–96

  • Kasmara H, Melanie, Nurfajri DA, Hermawan W, Panatarani C (2018) The toxicity evaluation of prepared Lantana camara nano extract against Spodoptera litura (Lepidoptera: Noctuidae). AIP Conference Proceedings 1927, 030046

  • Krishna MI, Reddy BG, Veerabhadram G, Madhusudhan A (2016) Eco-friendly green synthesis of silver nanoparticles using Salmalia malabarica: Synthesis,characterization, antimicrobial, and catalytic activity studies. Appl Nanosci 6:681–689 (49)

    Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B 76:50–56

    CAS  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    CAS  Google Scholar 

  • Lei Z, Fan Y (2006) Preparation of silver nanocomposites stabilized by an amphiphilic block copolymer under ultrasonic irradiation. Mater Lett 60:2256–2260

    CAS  Google Scholar 

  • Mao HB, Chen ZY, Wang YJ, JangYan S (2018) Silver nanoparticles have lethal andsub lethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8:2445

    PubMed  PubMed Central  Google Scholar 

  • Matsumoto S, Christie RJ, Nishiyama N, Miyata K, Ishii A (2009) Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced si-RNA delivery. Biomacromology 10:119–127

    CAS  Google Scholar 

  • Meng XU, Abdlli N, Wang N, Lu P, Nie Z, Dong X, Lu S, Chen K (2017) Effects of Ag nanoparticles on growth and fat body proteins in silkworms (Bombyx mori). Biol Trace Elem Res 180:327–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116(15):6755–6759

    CAS  Google Scholar 

  • Murugan K, Nataraj D, Madhiyazhagan P, Sujitha V, Chandramohan B, Panneerselvam C. and Benelli G (2016) Carbon and silver nanoparticles in the fight against the filariasis vector Culex quinquefasciatus: genotoxicity and impact on behavioral traits of non-target aquatic organisms. Parasitol Res 115(3):1071–1083

  • Nakkala JR, Mata R, Gupta AK, Sadras SR (2014) Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract. Eur J Med Chem 85:784–794

    CAS  PubMed  Google Scholar 

  • Onyilagha JC, lazorko J, gruber MY, Soroka JJ, Erlandson MA (2004) Effect of flavonoids on feeding preference and development of the crucifer pest. J Chem Ecol 30:109–124

    CAS  PubMed  Google Scholar 

  • Panacek A, Prucek R, Safarova D, Dittrich M, Richtrova J, Benickova K, Zboril R, Kvitek L (2011) Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ Sci Technol 45:4974–4979

    CAS  PubMed  Google Scholar 

  • Raj A, Shah P, Agrawal N (2017) Dose-dependent effect of silver nanoparticles (Ag NPs) on fertility and survival of Drosophila: An in-vivo study. Plos One 12(5):e0178051

    PubMed  PubMed Central  Google Scholar 

  • Rajesh WR, Niranjan SK, Jaya RL, Vijay DM, Sahebraob K (2010) Extracellular synthesis of silver nanoparticles using dried leaves of pongamia pinnata (L) pierre. Nano Micro Lett 2:106–113

    Google Scholar 

  • Rasheed T, Bilal M, Iqbal HMN, Li C (2017) Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surf B 158:408–415

    CAS  Google Scholar 

  • Sanghi R, And Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Biores Technol 100:501–504

    CAS  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal active against malaria and filariasis vectors. Parasitol Res 108:693–702

    PubMed  Google Scholar 

  • Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B Biointerf 73:332–338

    CAS  Google Scholar 

  • Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y, Zargar M (2012) Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int J Nanomed 7:5603–5610

    CAS  Google Scholar 

  • Shekari M, Sendi JJ, Etebari K, Zibaee A, Shadparvar A (2008) Effects of Artemisia annua L. (Asteracea) on nutritional physiology and enzyme activities of elm leaf beetle.Xanthogaleruca luteola Mull. (Coleoptera: Chrysomelidae). Pest Biochem Physiol 91:66–74

    CAS  Google Scholar 

  • Singh H, Du J, Yi T (2017) Green and rapid synthesis of silver nanoparticles using Borago officinalis leaf extract: anticancer and antibacterial activities. Artif Cells Nanomed Biotechnol 45(7):1310–1316

    CAS  PubMed  Google Scholar 

  • Soares MR, Corrȇa RO, Stroppa PH, Marques FC, Andrade GF, Corrȇa CC, Brandão MA, Raposo NR (2018) Biosynthesis of silver nanoparticles using Caesalpinia ferrea (Tul.) Martius extract: physicochemical characterization, antifungal activity and cytotoxicity. PeerJ 6:e4361

    PubMed  PubMed Central  Google Scholar 

  • Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. J Bioprocess Biosyst Eng 32(1):79–84

    Google Scholar 

  • Steel RGD, Torrie JH (1960) Principles and procedures of statistics. McGraw-Hill Book Company, New York, p 481

    Google Scholar 

  • Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Benelli G (2015) Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114(9):3315–3325

    PubMed  Google Scholar 

  • Suresh U, Murugan K, Panneerselvam C (2018) Suaeda maritimabased herbal coils and green nanoparticles as potential biopesticides against the dengue vector Aedes aegypti and the tobacco cutworm Spodoptera litura. Physiol Mol Plant Pathol 101:225–235

    CAS  Google Scholar 

  • Szweda P, Gucwa K, Kurzyk E, Romanowska E, Dzierzanowska-Fangrat K, Zielinska Jurek A, Kus PM, Milewski S (2015) Essential oils, silver nanoparticles and propolis as alternative agents against fluconazole resistant Candida albicans, Candida glabrata and Candida krusei clinical isolates. Indian J Microbiol 55(2):175–183

    CAS  PubMed  Google Scholar 

  • Thatoi P, Kerry RG, Gouda S, Das G, Pramanik K, Thatoi H, Patra JK (2016) Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J Photochem Photobiol B Biol 163:311–318

    CAS  Google Scholar 

  • Tripathi A, Chandrasekaran N, Raichur AM, Mukherjee A (2009) Antibacterial applications of silver nanoparticles synthesized by aqueous extract of Azadirachta indica (Neem) leaves. J Biomed Nanotechnol 5:93–98

    CAS  PubMed  Google Scholar 

  • Vani C, Brindhaa U (2013) Silica nanoparticles as nanocides against Corcyra cephalonica (S).the stored grain pest. Int J Pharma Bio Sci 4(3):1108–1118

    CAS  Google Scholar 

  • Vasquez-Munoz R, Avalos-Borja M, Castro-Longoria E (2014) Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. PLoS One 9(10):e108876

    Google Scholar 

  • Veerasamy R, Xin TZ, Gunasagaran S et al (2011) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 15(2):113–120

  • Wang L, Wu Y, Xie J, Wu S, Wu Z (2018) Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts. Mater Sci Eng C Mater Biol Appl 86:1–8

    PubMed  Google Scholar 

  • Wei L, Lu J, Xu H, Patel A, Chen Z, Chen G (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20(5):595–601

    CAS  PubMed  Google Scholar 

  • WHO (2005) Guidelines for Laboratory and field testing of mosquito larvicides, World Health Organization document WHO, cds /WHO-pes / gcdpp / (13)

  • Xue B, He D, Gao S, Wang D, Yokoyama K, Wang L (2016) Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int J Nanomed 11:1899–1906

    CAS  Google Scholar 

  • Yasur J, Pathipati UR (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102

    CAS  PubMed  Google Scholar 

  • Zahir AA, Rahuman AA (2012) Evaluation of different extracts and synthesized silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis bispinosa and Hippoboscam aculata. Vet Parasitol 187:511–520

    PubMed  Google Scholar 

  • Zemmouri H, Boumendjel A, Ammarc S, Messarah M, El Feki A, Bouaziz M (2019) Chemical composition and antioxidant activity of Borago officinalis L. leaf extract growing in Algeria. Arab J Chem 12(8):1954–1963

  • Zhang XF, Liu ZG, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(12):1534

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waheed Sayed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Green biosynthesis of silver nanoparticles using Borago officinalis leaf extract.

• Characterization of silver nanoparticles using various advanced techniques.

• Toxic effect of the tested plant extract and the synthesized silver nanoparticles.

• Determination of LC50 of the tested plant extract and the synthesized silver nanoparticles.

• Potential of the tested plant extract and the synthesized silver nanoparticles on various biological aspects of Spodoptera littoralis after treatment with LC50.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazaa, M., Alm-Eldin, M., Ibrahim, AE. et al. Biosynthesis of Silver Nanoparticles using Borago officinslis leaf extract, characterization and larvicidal activity against cotton leaf worm, Spodoptera littoralis (Bosid). Int J Trop Insect Sci 41, 145–156 (2021). https://doi.org/10.1007/s42690-020-00187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-020-00187-8

Keywords

Navigation