Skip to main content
Log in

Develop Molecular Dynamics Method to Simulate the Flow and Thermal Domains of H2O/Cu Nanofluid in a Nanochannel Affected by an External Electric Field

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this study, molecular dynamics method is used to estimate the atomic manner that effect on H2O/Cu Nanofluid behavior. The Copper Nanochannel with sphere barriers is simulated to study of H2O/Cu Nanofluid flow and the atomic interactions of these structures are described by Embedded Atom Model and Lennard-Jones force fields. For study of atomic behavior of these structures, physical parameters such as temperature, density and velocity profiles of Nanofluid reported. Molecular dynamics simulation results show that these parameters of H2O/Cu Nanofluid inside non-ideal Nanochannel affected by atomic barriers’ number and size changes. Numerically, we calculated the density and velocity profiles in Nanochannel with spherical barriers which show these numerical reports can be important for the heat transferring procedure in the industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.Eric Drexler, Engines of creation: the coming era of nanotechnology (Doubleday, New York, 1986)

    Google Scholar 

  2. K.Eric Drexler, Nanosystems: molecular machinery, manufacturing, and computation (Wiley, New York, 1992)

    Google Scholar 

  3. R.A. Taylor et al., Small particles, big impacts: a review of the diverse applications of nanofluids. J. Appl. Phys. 113, 011301 (2013)

    Article  ADS  Google Scholar 

  4. J. Buongiorno, Convective transport in nanofluids. J. Heat Transfer 128, 240 (2006)

    Article  Google Scholar 

  5. W. Minkowycz et al., Argonne transportation technology R&D center nanoparticle heat transfer and fluid flow (CRC Press, Boca Raton, 2013)

    Google Scholar 

  6. S.K. Das, U.S. Stephen, S. Choi, Y. Wenhua, T. Pradeep, Nanofluids: Science and Technology (Wiley, New Yor, 2007), p. 397

    Book  Google Scholar 

  7. S. Witharana, H. Chen, Y. Ding, Stability of nanofluids in quiescent and shear flow fields. Nanoscale Res. Lett. 6, 231 (2011)

    Article  ADS  Google Scholar 

  8. H. Chen, S. Witharana et al., Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology. 7, 151–157 (2009)

    Article  Google Scholar 

  9. D.M. Forrester et al., Experimental verification of nanofluid shear-wave reconversion in ultrasonic fields. Nanoscale. 8, 5497–5506 (2016)

    Article  ADS  Google Scholar 

  10. N.A. Jolfaei, N.A. Jolfaei, M. Hekmatifar, A. Piranfar, D. Toghraie, R. Sabetvand, S. Rostami, Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches. Comput. Methods Programs Biomed. 105, 169 (2019)

    Google Scholar 

  11. R. Sabetvand, M.E. Ghazi, M. Izadifard, Studying temperature effects on electronic and optical properties of cubic CH3NH3SnI3 perovskite. J. Comput. Electron. 19, 70–79 (2020)

    Article  Google Scholar 

  12. N.A. Jolfaei, N.A. Jolfaei, M. Hekmatifar, A. Piranfar, D. Toghraie, R. Sabetvand, S. Rostami, Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches. Comput. Methods Prog. Biomed. 105, 169 (2019)

    Google Scholar 

  13. M. Goel, S.P. Harsha, S. Singh, A.K. Sahani, Analysis of temperature, helicity and size effect on the mechanical properties of carbon nanotubes using molecular dynamics simulation. Mater. Today 10, 255 (2020)

    Google Scholar 

  14. D. Toghraie, M. Hekmatifar, Y. Salehipour, M. Afrand, Molecular dynamics simulation of Couette and Poiseuille Water–Copper nanofluid flows in rough and smooth nanochannels with different roughness configurations. Chem. Phys. 527, 110505 (2019)

    Article  Google Scholar 

  15. A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010)

    Article  Google Scholar 

  16. Ziarani AS, Mohammad AA (2006) Development of qualitative rules for simulation disturbances and actions in a Modeling and simulation of double-pass sheet-and-tube solar water heaters. In: 17th International conference modeling and simulation, Canada, pp 585–590

  17. C. Kunert, J. Harting, Simulation of fluid flow in hydrophobic rough microchannels. Int. J. Comput. Fluid Dyn. 22, 475–480 (2008)

    Article  Google Scholar 

  18. A.S. Ziarani, A.A. Mohamad, Effect of wall roughness on the slip of fluid in a microchannel. Nanoscale Microscale Thermophys. Eng. 12, 154–169 (2008)

    Article  ADS  Google Scholar 

  19. F.D. Sofos, T.E. Karakasidis, A. Liakopoulos, Effects of wall roughness on flow in nanochannels. Phys. Rev. E 79, 2 (2009)

    Article  Google Scholar 

  20. N. Asproulis, D. Drikakis, Surface roughness effects in micro and nanofluidic devices. J. Comput. Theor. Nanosci. 7, 1825–1830 (2010)

    Article  Google Scholar 

  21. Y. Li, J. Xu, D. Li, Molecular dynamics simulation of nanoscale liquid flows. Microfluid. Nanofluid. 9, 1011–1031 (2010)

    Article  Google Scholar 

  22. R. Kamali, A. Kharazmi, Molecular dynamics simulation of surface roughness effects on nanoscale flows. Int. J. Therm. Sci. 50, 226–232 (2011)

    Article  Google Scholar 

  23. G. Tertsinidou, M.J. Assael, W.A. Wakeham, Int. J. Thermophys. 36, 2 (2015). https://doi.org/10.1007/s10765-015-1856-9

    Article  Google Scholar 

  24. M.A. Taghikhani, Int. J. Thermophys. 1, 1 (2019). https://doi.org/10.1007/s10765-019-2507-3

    Article  Google Scholar 

  25. F. Nasirzadehroshenin, H. Maddah, H. Sakhaeinia et al., Int. J. Thermophys. (2019). https://doi.org/10.1007/s10765-019-2551-z

    Article  Google Scholar 

  26. R. Tariq, Y. Hussain, N.A. Sheikh et al., Int. J. Thermophys. (2020). https://doi.org/10.1007/s10765-020-2619-9

    Article  Google Scholar 

  27. B. Wang, W. Sheng, X. Peng, Int. J. Thermophys. (2009). https://doi.org/10.1007/s10765-009-0673-4

    Article  Google Scholar 

  28. S. Eiamsa-ard, K. Kiatkittipong, Int. J. Thermophys. (2019). https://doi.org/10.1007/s10765-019-2485-5

    Article  Google Scholar 

  29. S. Malekian, E. Fathi, N. Malekian et al., Int. J. Thermophys. (2018). https://doi.org/10.1007/s10765-018-2422-z

    Article  Google Scholar 

  30. M.J. Assael, C.F. Chen, I. Metaxa, W.A. Wakeham, Int. J. Thermophys. (2004). https://doi.org/10.1023/B:IJOT.0000038494.22494.04

    Article  Google Scholar 

  31. T. Schlick, pursuing Laplace’s vision on modern computers, in Mathematical applications to biomolecular structure and dynamics, IMA volumes in mathematics and its applications, vol. 82, ed. by J.P. Mesirov, K. Schulten, D.W. Sumners (Springer, New York, 1996), pp. 218–247

    Google Scholar 

  32. B.J. Alder, T.E. Wainwright, Studies in molecular dynamics. I. General method. J. Chem. Phys. 31, 459 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  33. A. Rahman, Correlations in the motion of atoms in liquid argon. Phys. Rev. 136, A405–A411 (1964)

    Article  ADS  Google Scholar 

  34. J.B. Gibson, A.N. Goland, M. Milgram, G.H. Vineyard, Dynamics of radiation damage. Phys. Rev. 120, 1229–1253 (1960)

    Article  ADS  Google Scholar 

  35. S. Plimpton, Fast parallel algorithms for short range molecular dynamics. J Comp Phys 117, 1–19 (1995)

    Article  ADS  Google Scholar 

  36. T.W. Sirk, S. Moore, E. Brown, F, Characteristics of thermal conductivity in classical water models. J Chem Phys 138, 123–137 (2013)

    Article  Google Scholar 

  37. S.J. Plimpton, A. Thompson, P, computational aspects of many body potentials. MRS Bull. 37, 513–521 (2012)

    Article  Google Scholar 

  38. S. J. Plimpton, R. Pollock, M. Stevens. In: Proc of the Eighth SIAM conference on parallel processing for scientific computing, Minneapolis, MN 223–245 (1997)

  39. Brown. W. M, Wang. P, S. J. Plimpton, Tharrington. A. N, Implementing Molecular Dynamics on Hybrid High Performance Computers Short-Range Forces, Comp Phys Comm, 182, 898–911 (2011)

  40. M.K. Gilson, K.A. Sharp, B.H. Honig, Calculating the electrostatic potential of molecules in solution: method and error assessment. J. Comput. Chem. 9, 327–335 (1988)

    Article  Google Scholar 

  41. J.E. Lennard-Jones, On the determination of molecular fields. Proc. R. Soc. Lond. A 106, 463–477 (1924)

    Article  ADS  Google Scholar 

  42. M.S. Daw, M. Baskes, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Physical review B. Am. Phys. Soc. 29, 6443–6453 (1984)

    Google Scholar 

  43. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)

    Article  Google Scholar 

  44. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, J. Hermans, Interaction models for water in relation to protein hydration. Intermolecular Forces 1981, 331–342 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Karimipour.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari, A., Nguyen, Q., Karimipour, A. et al. Develop Molecular Dynamics Method to Simulate the Flow and Thermal Domains of H2O/Cu Nanofluid in a Nanochannel Affected by an External Electric Field. Int J Thermophys 41, 126 (2020). https://doi.org/10.1007/s10765-020-02708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02708-6

Keywords

Navigation