Skip to main content
Log in

Dexmedetomidine Suppressed the Biological Behavior of HK-2 Cells Treated with LPS by Down-Regulating ALKBH5

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Dexmedetomidine inhibits the release of inflammatory cytokines and exerts a systemic anti-inflammatory effect and has potential protective effects on vital organs such as lung, heart, and kidneys. The aim of this study was to investigate the effect of dexmedetomidine on LPS-treated HK-2 cells in vitro and explore the potential mechanisms. The HK-2 cells were pretreated with dexmedetomidine before LPS induction. CCK-8, flow cytometry, ELISA, or qRT-PCR was performed to detect cell proliferation, apoptosis, and proinflammatory cytokine expression. The levels of MALAT1 in HK-2 cells under different stimulation were measured by qRT-PCR. Then, m6A RNA immunoprecipitation was performed to detect methylated MALAT1 in HK-2 cells. The results showed dexmedetomidine suppressed cell viability, induced cell apoptosis, and reduced inflammation cytokine production of LPS-treated HK-2 cells. Besides, dexmedetomidine reduced the expression of MALAT1 in HK-2 cells under LPS stimulation. In addition, ALKBH5 could up-regulate MALAT1 expression by demethylation. Furthermore, dexmedetomidine inhibited the expression of ALKBH5 in LPS-treated HK-2 cells. ALKBH5 knockdown inhibited cell viability, induced cell apoptosis, and decreased inflammation cytokine production of LPS-treated HK-2 cells. In short, dexmedetomidine suppressed the biological behavior of HK-2 cells treated with LPS by inhibiting the expression of ALKBH5 in vitro, which may provide potential targets for the prevention and treatment of sepsis-induced kidney injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Afonso, J., and F. Reis. 2012. Dexmedetomidine: Current role in anesthesia and intensive care. Revista Brasileira de Anestesiologia 62 (1): 118–133. https://doi.org/10.1016/S0034-7094(12)70110-1.

    Article  CAS  PubMed  Google Scholar 

  2. Aik, W., J.S. Scotti, H. Choi, L. Gong, M. Demetriades, C.J. Schofield, and M.A. McDonough. 2014. Structure of human RNA N(6)-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Research 42 (7): 4741–4754. https://doi.org/10.1093/nar/gku085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bagshaw, S.M., C. George, and R. Bellomo. 2008. Early acute kidney injury and sepsis: A multicentre evaluation. Critical Care 12 (2): R47. https://doi.org/10.1186/cc6863.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bone, R.C., C.L. Sprung, and W.J. Sibbald. 1992. Definitions for sepsis and organ failure. Critical Care Medicine 20 (6): 724–726. https://doi.org/10.1097/00003246-199206000-00002.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, H., X. Wang, X. Yan, X. Cheng, X. He, and W. Zheng. 2018. LncRNA MALAT1 regulates sepsis-induced cardiac inflammation and dysfunction via interaction with miR-125b and p38 MAPK/NFkappaB. International Immunopharmacology 55: 69–76. https://doi.org/10.1016/j.intimp.2017.11.038.

    Article  CAS  PubMed  Google Scholar 

  6. Feng, C., Y. Liu, G. Wang, Z. Deng, Q. Zhang, W. Wu, Y. Tong, C. Cheng, and Z. Chen. 2014. Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. The Journal of Biological Chemistry 289 (17): 11571–11583. https://doi.org/10.1074/jbc.M113.546168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gu, J., J. Chen, P. Xia, G. Tao, H. Zhao, and D. Ma. 2011. Dexmedetomidine attenuates remote lung injury induced by renal ischemia-reperfusion in mice. Acta Anaesthesiologica Scandinavica 55 (10): 1272–1278. https://doi.org/10.1111/j.1399-6576.2011.02526.x.

    Article  CAS  PubMed  Google Scholar 

  8. Hanci, V., G. Yurdakan, S. Yurtlu, I.O. Turan, and E.Y. Sipahi. 2012. Protective effect of dexmedetomidine in a rat model of alpha-naphthylthiourea-induced acute lung injury. The Journal of Surgical Research 178 (1): 424–430. https://doi.org/10.1016/j.jss.2012.02.027.

    Article  CAS  PubMed  Google Scholar 

  9. He, Y., H. Hu, Y. Wang, H. Yuan, Z. Lu, P. Wu, D. Liu, L. Tian, J. Yin, K. Jiang, and Y. Miao. 2018. ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation. Cellular Physiology and Biochemistry 48 (2): 838–846. https://doi.org/10.1159/000491915.

    Article  CAS  PubMed  Google Scholar 

  10. Ji, P., S. Diederichs, W. Wang, S. Boing, R. Metzger, P.M. Schneider, N. Tidow, et al. 2003. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22 (39): 8031–8041. https://doi.org/10.1038/sj.onc.1206928.

    Article  CAS  PubMed  Google Scholar 

  11. Lee, M., B. Kim, and V.N. Kim. 2014. Emerging roles of RNA modification: m(6)A and U-tail. Cell 158 (5): 980–987. https://doi.org/10.1016/j.cell.2014.08.005.

    Article  CAS  PubMed  Google Scholar 

  12. Maity, A., and B. Das. 2016. N6-methyladenosine modification in mRNA: Machinery, function and implications for health and diseases. The FEBS Journal 283 (9): 1607–1630. https://doi.org/10.1111/febs.13614.

    Article  CAS  PubMed  Google Scholar 

  13. Mantz, J., J. Josserand, and S. Hamada. 2011. Dexmedetomidine: New insights. European Journal of Anaesthesiology 28 (1): 3–6. https://doi.org/10.1097/EJA.0b013e32833e266d.

    Article  CAS  PubMed  Google Scholar 

  14. Mattick, J.S., and J.L. Rinn. 2015. Discovery and annotation of long noncoding RNAs. Nature Structural & Molecular Biology 22 (1): 5–7. https://doi.org/10.1038/nsmb.2942.

    Article  CAS  Google Scholar 

  15. Mehta, R.L., J. Bouchard, S.B. Soroko, T.A. Ikizler, E.P. Paganini, G.M. Chertow, and J. Himmelfarb. 2011. Sepsis as a cause and consequence of acute kidney injury: Program to improve care in acute renal disease. Intensive Care Medicine 37 (2): 241–248. https://doi.org/10.1007/s00134-010-2089-9.

    Article  PubMed  Google Scholar 

  16. Meyer, K.D., and S.R. Jaffrey. 2014. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nature Reviews. Molecular Cell Biology 15 (5): 313–326. https://doi.org/10.1038/nrm3785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rajapakse, S., C. Rodrigo, A. Rajapakse, D. Kirthinanda, and S. Wijeratne. 2009. Renal replacement therapy in sepsis-induced acute renal failure. Saudi Journal of Kidney Diseases and Transplantation 20 (4): 553–559.

    PubMed  Google Scholar 

  18. Riker, R.R., Y. Shehabi, P.M. Bokesch, D. Ceraso, W. Wisemandle, F. Koura, P. Whitten, B.D. Margolis, D.W. Byrne, E.W. Ely, M.G. Rocha, and SEDCOM (Safety and Efficacy of Dexmedetomidine Compared With Midazolam) Study Group. 2009. Dexmedetomidine vs midazolam for sedation of critically ill patients: A randomized trial. JAMA 301 (5): 489–499. https://doi.org/10.1001/jama.2009.56.

    Article  CAS  PubMed  Google Scholar 

  19. Riveros, R., N. Makarova, E. Riveros-Perez, P. Chodavarapu, W. Saasouh, H.O. Yilmaz, E. Cuko, R. Babazade, S. Kimatian, and A. Turan. 2017. Utility and clinical profile of dexmedetomidine in pediatric cardiac catheterization procedures: A matched controlled analysis. Seminars in Cardiothoracic and Vascular Anesthesia 21 (4): 330–340. https://doi.org/10.1177/1089253217708035.

    Article  PubMed  Google Scholar 

  20. Roundtree, I.A., M.E. Evans, T. Pan, and C. He. 2017. Dynamic RNA modifications in gene expression regulation. Cell 169 (7): 1187–1200. https://doi.org/10.1016/j.cell.2017.05.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanders, R.D., P. Sun, S. Patel, M. Li, M. Maze, and D. Ma. 2010. Dexmedetomidine provides cortical neuroprotection: Impact on anaesthetic-induced neuroapoptosis in the rat developing brain. Acta Anaesthesiologica Scandinavica 54 (6): 710–716. https://doi.org/10.1111/j.1399-6576.2009.02177.x.

    Article  CAS  PubMed  Google Scholar 

  22. Taniguchi, T., A. Kurita, K. Kobayashi, K. Yamamoto, and H. Inaba. 2008. Dose- and time-related effects of dexmedetomidine on mortality and inflammatory responses to endotoxin-induced shock in rats. Journal of Anesthesia 22 (3): 221–228. https://doi.org/10.1007/s00540-008-0611-9.

    Article  PubMed  Google Scholar 

  23. van Zanten, A.R., S. Brinkman, M.S. Arbous, A. Abu-Hanna, M.M. Levy, and N.F. de Keizer. 2014. Guideline bundles adherence and mortality in severe sepsis and septic shock. Critical Care Medicine 42 (8): 1890–1898. https://doi.org/10.1097/CCM.0000000000000297.

    Article  CAS  PubMed  Google Scholar 

  24. Yu, Z., A. Rayile, X. Zhang, Y. Li, and Q. Zhao. 2017. Ulinastatin protects against lipopolysaccharide-induced cardiac microvascular endothelial cell dysfunction via downregulation of lncRNA MALAT1 and EZH2 in sepsis. International Journal of Molecular Medicine 39 (5): 1269–1276. https://doi.org/10.3892/ijmm.2017.2920.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, J., S. Guo, H.Y. Piao, Y. Wang, Y. Wu, X.Y. Meng, D. Yang, Z.C. Zheng, and Y. Zhao. 2019. ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1. Journal of Physiology and Biochemistry 75 (3): 379–389. https://doi.org/10.1007/s13105-019-00690-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, S., B.S. Zhao, A. Zhou, K. Lin, S. Zheng, Z. Lu, Y. Chen, E.P. Sulman, K. Xie, O. Bögler, S. Majumder, C. He, and S. Huang. 2017. m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31 (4): 591–606 e596. https://doi.org/10.1016/j.ccell.2017.02.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng, G., J.A. Dahl, Y. Niu, P. Fedorcsak, C.M. Huang, C.J. Li, C.B. Vagbo, et al. 2013. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Molecular Cell 49 (1): 18–29. https://doi.org/10.1016/j.molcel.2012.10.015.

    Article  CAS  PubMed  Google Scholar 

  28. Zong, X., S. Nakagawa, S.M. Freier, J. Fei, T. Ha, S.G. Prasanth, and K.V. Prasanth. 2016. Natural antisense RNA promotes 3′ end processing and maturation of MALAT1 lncRNA. Nucleic Acids Research 44 (6): 2898–2908. https://doi.org/10.1093/nar/gkw047.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Lu.

Ethics declarations

The study was approved by the Medical Ethics Committee of Sichuan Academy of Medical Science, Sichuan Province People’s Hospital.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Lu, Y. Dexmedetomidine Suppressed the Biological Behavior of HK-2 Cells Treated with LPS by Down-Regulating ALKBH5. Inflammation 43, 2256–2263 (2020). https://doi.org/10.1007/s10753-020-01293-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01293-y

KEY WORDS

Navigation