Skip to main content
Log in

Hidden and Open Heavy-Flavor Hadronic States

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We discuss the stability of hidden and open heavy-flavor hadronic states made of either two or three mesons. References are made in passing to studies regarding two and three-body systems containing baryons. We perform a comparative study analyzing the results in terms of quark and hadron degrees of freedom. Compact and molecular states are found to exist in very specific situations. We estimate the decay width for the different scenarios: weak decays for bound states by the strong interaction, and strong decays for hadronic resonances above a decay threshold. The experimental observation of narrow hadrons lying well above their lowest decay threshold is theoretically justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. For instance, going from \(H_0=p^2+x^2\) to \(H_0 + \lambda x\), lowers the ground-state energy from \(E_0=1\) to \(E_0-\lambda ^2/4\), and more generally, breaking parity in \(H=H_\mathrm{even} + H_\mathrm{odd}\) gives \(E < E_\mathrm{even}\).

  2. It is worth to note that Ref.  [13] derived the same conclusion for a three-body system of particles with masses \(MM\mu \), with \(M > \mu \). For non-interacting heavy-particles and an slightly attractive mass independent interaction between the light and heavy particles, the binding energy of the three-body system increases rapidly when \(M/\mu \) augments, see Fig. 3 of Ref.  [13].

  3. Results obtained with the AL1 model  [20].

  4. Note that the vicinity of thresholds is a necessary though not sufficient condition for the existence of a resonance. See Ref.  [25] for a thorough and critical analysis.

  5. See, for example, Ref.  [46] for a further demonstration of the instability of all-heavy tetraquarks \(QQ\bar{Q} \bar{Q}\) with a rigorous treatment of the few-body problem.

  6. The binding energy reported for the \(T_{bb}\) tetraquark ranges between 90 and 214 MeV.

  7. Note that the three-body channels with \(J=0\) or 1 would couple to two B-meson subsystems where no attraction has been reported  [22, 23, 28, 54,55,56,57,58,59,60,61], whereas the \(J=3\) would not contain a two-body subsystem with \(j=1\), the quantum numbers of the \(T_{bb}\) tetraquark. The same reasoning excludes the \(I=3/2\) channels.

  8. Although the Breit–Wigner formula is not very accurate close to threshold; however, we have explicitly checked by analytic continuation of the S-matrix on the second Riemann sheet that at low energy the width follows the expected \(\varGamma \sim E^{1/2}\) behavior, the one shown by Fig. 9.

References

  1. M. Gell-Mann, Phys. Lett. 8, 214 (1964)

    ADS  Google Scholar 

  2. H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, Phys. Rep. 639, 1 (2016)

    ADS  MathSciNet  Google Scholar 

  3. R.A. Briceño et al., Chin. Phys. C 40, 042001 (2016)

    ADS  Google Scholar 

  4. J.-M. Richard, Few-Body Syst. 57, 1185 (2016)

    ADS  Google Scholar 

  5. R.F. Lebed, R.E. Mitchell, E.S. Swanson, Prog. Part. Nucl. Phys. 93, 143 (2017)

    ADS  Google Scholar 

  6. A. Ali, J.S. Lange, S. Stone, Prog. Part. Nucl. Phys. 97, 123 (2017)

    ADS  Google Scholar 

  7. A. Esposito, A. Pilloni, A.D. Polosa, Phys. Rep. 668, 1 (2017)

    ADS  MathSciNet  Google Scholar 

  8. Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, Prog. Part. Nucl. Phys. 107, 237 (2019)

    ADS  Google Scholar 

  9. M. Harvey, Nucl. Phys. 352, 301 (1981)

    Google Scholar 

  10. J. Vijande, A. Valcarce, Phys. Rev. C 80, 035204 (2009)

    ADS  Google Scholar 

  11. A. Valcarce, J. Vijande, J.-M. Richard, H. Garcilazo, Few-Body Syst. 59, 9 (2018)

    ADS  Google Scholar 

  12. H. Garcilazo, A. Valcarce, Phys. Lett. B 784, 169 (2018)

    ADS  Google Scholar 

  13. H. Garcilazo, Phys. Rev. C 30, 765 (1984)

    ADS  Google Scholar 

  14. T.F. Caramés, A. Valcarce, Phys. Rev. D 85, 094017 (2012)

    ADS  Google Scholar 

  15. H. Garcilazo, A. Valcarce, T.F. Caramés, Phys. Rev. D 96, 074009 (2017)

    ADS  Google Scholar 

  16. J.-M. Richard, A. Valcarce, J. Vijande, Phys. Lett. B 774, 710 (2017)

    ADS  Google Scholar 

  17. H. Garcilazo, A. Valcarce, Phys. Lett. B 772, 394 (2017)

    ADS  Google Scholar 

  18. H. Garcilazo, A. Valcarce, Eur. Phys. J. C 78, 259 (2018)

    ADS  Google Scholar 

  19. E. Hernández, J. Vijande, A. Valcarce, J.-M. Richard, Phys. Lett. B 800, 135073 (2020)

    Google Scholar 

  20. C. Semay, B. Silvestre-Brac, Z. Phys. C 61, 271 (1994)

    ADS  Google Scholar 

  21. J. -M. Richard, Private communication and work in progress

  22. J.-P. Ader, J.-M. Richard, P. Taxil, Phys. Rev. D 25, 2370 (1982)

    ADS  Google Scholar 

  23. J.-M. Richard, A. Valcarce, J. Vijande, Phys. Rev. C 97, 035211 (2018)

    ADS  Google Scholar 

  24. T.F. Caramés, A. Valcarce, J. Vijande, Phys. Lett. B 699, 291 (2011)

    ADS  Google Scholar 

  25. J. Vijande, A. Valcarce, Phys. Lett. B 736, 325 (2014)

    ADS  Google Scholar 

  26. Y. Ikeda, B. Charron, S. Aoki, T. Doi, T. Hatsuda, T. Inoue, N. Ishii, K. Murano, H. Nemura, K. Sasaki, Phys. Lett. B 729, 85 (2014)

    ADS  Google Scholar 

  27. H.J. Lipkin, Phys. Lett. B 172, 242 (1986)

    ADS  Google Scholar 

  28. E.J. Eichten, C. Quigg, Phys. Rev. Lett. 119, 202002 (2017)

    Google Scholar 

  29. C. Quigg, in 53rd Rencontres de Moriond QCD High Energy Interactions Conference (La Thuile, Italy, 2018). arXiv:1804.04929 [hep-ph]

  30. T.F. Caramés, J. Vijande, A. Valcarce, Phys. Rev. D 99, 014006 (2019)

    ADS  Google Scholar 

  31. T.F. Caramés, A. Valcarce, Phys. Lett. B 758, 244 (2016)

    ADS  Google Scholar 

  32. M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 755, 29c (2005)

    ADS  Google Scholar 

  33. H. Garcilazo, T. Fernández-Caramés, A. Valcarce, Phys. Rev. C 75, 034002 (2007)

    ADS  Google Scholar 

  34. H. Garcilazo, A. Valcarce, T. Fernández-Caramés, Phys. Rev. C 76, 034001 (2007)

    ADS  Google Scholar 

  35. H. Garcilazo, A. Valcarce, T.F. Caramés, Phys. Rev. C 92, 024006 (2015)

    ADS  Google Scholar 

  36. T. Barnes, F.E. Close, E.S. Swanson, Phys. Rev. D 91, 014004 (2015)

    ADS  Google Scholar 

  37. T.F. Caramés, A. Valcarce, J. Vijande, Phys. Lett. B 709, 358 (2012)

    ADS  Google Scholar 

  38. M. Tanabashi et al., (Particle Data Group) Phys. Rev. D 98, 030001 (2018)

  39. E. Eichten, K. Gottfried, T. Kinoshita, K. Kogut, K. Lane, T.-M. Yan, Phys. Rev. Lett. 34, 369 (1975). [Erratum: Phys. Rev. Lett. 36, 1276 (1976)]

    ADS  Google Scholar 

  40. N. Isgur, Phys. Rev. D 60, 054013 (1999)

    ADS  Google Scholar 

  41. R.A. Bertlmann, A. Martin, Nucl. Phys. B 168, 111 (1980)

    ADS  Google Scholar 

  42. S. Nussinov, M.A. Lampert, Phys. Rep. 362, 193 (2002)

    ADS  Google Scholar 

  43. J.D. Weinstein, N. Isgur, Phys. Rev. D 41, 2236 (1990)

    ADS  Google Scholar 

  44. E. Braaten, M. Lu, Phys. Rev. D 77, 014029 (2008)

    ADS  Google Scholar 

  45. T. Fernández-Caramés, A. Valcarce, J. Vijande, Phys. Rev. Lett. 103, 222001 (2009)

    ADS  Google Scholar 

  46. J.-M. Richard, A. Valcarce, J. Vijande, Phys. Rev. D 95, 054019 (2017)

    ADS  Google Scholar 

  47. H. Garcilazo, J. Phys. G 13, L63 (1987)

    ADS  Google Scholar 

  48. P. del Amo Sánchez et al. (BaBar Collaboration), Phys. Rev. D 82, 011101(R) (2010)

  49. N.A. Törnqvist, Phys. Rev. Lett. 67, 556 (1991)

    ADS  Google Scholar 

  50. Z.-F. Sun, J. He, X. Liu, Z.-G. Luo, S.-L. Zhu, Phys. Rev. D 84, 054002 (2011)

    ADS  Google Scholar 

  51. J. Nieves, M. Pavón Valderrama, Phys. Rev. D 84, 056015 (2011)

    ADS  Google Scholar 

  52. M.V. Polyakov, P. Schweitzer, Phys. Rev. D 98, 034030 (2018)

    ADS  Google Scholar 

  53. T. Sugiura, Y. Ikeda, N. Ishii (HAL QCD Collaboration), EPJ Web Conf. 175, 05011 (2018)

  54. J. Vijande, A. Valcarce, N. Barnea, Phys. Rev. D 79, 074010 (2009)

    ADS  Google Scholar 

  55. A. Francis, R.J. Hudspith, R. Lewis, K. Maltman, Phys. Rev. Lett. 118, 142001 (2017)

    ADS  Google Scholar 

  56. M. Karliner, J.L. Rosner, Phys. Rev. Lett. 119, 202001 (2017)

    Google Scholar 

  57. P. Bicudo, K. Cichy, A. Peters, M. Wagner, Phys. Rev. D 93, 034501 (2016)

    ADS  Google Scholar 

  58. S.-Q. Luo, K. Chen, X. Liu, Y.-R. Liu, S.-L. Zhu, Eur. Phys. J. C 77, 709 (2017)

    ADS  Google Scholar 

  59. M.-L. Du, W. Chen, X.-L. Chen, S.-L. Zhu, Phys. Rev. D 87, 014003 (2013)

    ADS  Google Scholar 

  60. A. Czarnecki, B. Leng, M.B. Voloshin, Phys. Lett. B 778, 233 (2018)

    ADS  Google Scholar 

  61. P. Junnarkar, N. Mathur, M. Padmanath, Phys. Rev. D 99, 034507 (2019)

    ADS  Google Scholar 

  62. L. Ma, Q. Wang, U.-G. Meissner, Phys. Rev. D 100, 014028 (2019)

    ADS  Google Scholar 

  63. L.D. Faddeev, Sov. Phys. JETP 12, 1014 (1961)

    Google Scholar 

  64. L.D. Faddeev, Mathematical Aspects of the Three-Body Problem in Quantum Scattering Theory (Daley, New York, 1965)

    MATH  Google Scholar 

  65. J. Vijande, A. Valcarce, J.-M. Richard, Phys. Rev. D 76, 114013 (2007)

    ADS  Google Scholar 

  66. E. Hernández, J. Nieves, J.M. Verde-Velasco, Phys. Rev. D 74, 074008 (2006)

    ADS  Google Scholar 

  67. S.S. Agaev, K. Azizi, B. Barsbay, H. Sundu, Phys. Rev. D 99, 033002 (2019)

    ADS  Google Scholar 

  68. T. Gershon, A. Poluektov, JHEP 1901, 019 (2019)

    ADS  Google Scholar 

  69. G. Breit, E. Wigner, Phys. Rev. 49, 519 (1936)

    ADS  Google Scholar 

  70. S. Ceci, A. Švarc, B. Zauner, D.M. Manley, S. Capstick, Phys. Lett. B 659, 228 (2008)

    ADS  Google Scholar 

  71. S. Ceci, M. Korolija, B. Zauner, Phys. Rev. Lett. 111, 112004 (2013)

    ADS  Google Scholar 

  72. D.V. Bugg, Int. J. Mod. Phys. A 24, 394 (2009)

    ADS  Google Scholar 

  73. E. Braaten, M. Kusunoki, Phys. Rev. D 69, 074005 (2004)

    ADS  Google Scholar 

  74. A. Pilloni, Act. Phys. Pol. B Proc. Suppl. 7, 463 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors are deeply indebted to their long-term collaborators T. F. Caramés, E. Hernández, J. -M. Richard and J. Vijande that have participated in some of the issues reviewed in this work. This work has been partially funded by COFAA-IPN (México) and by Ministerio de Ciencia e Innovación and EU FEDER under Contracts No. FPA2016-77177-C2-2-P, PID2019-105439GB-C22 and RED2018-102572-T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Valcarce.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcilazo, H., Valcarce, A. Hidden and Open Heavy-Flavor Hadronic States. Few-Body Syst 61, 24 (2020). https://doi.org/10.1007/s00601-020-01557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-020-01557-1

Navigation