Skip to main content
Log in

Cold atmospheric pressure plasma decontamination of allspice berries and effect on qualitative characteristics

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The effect of low-temperature plasma generated at atmospheric pressure was studied in term of reduction of bacterial contamination and influence on nutritional characteristics of allspice (Pimenta dioica). The low-temperature plasma was generated in ambient air using Diffuse Coplanar Surface Barrier Discharge (DCSBD). The bacterial species inoculated on the surface of samples were reduced in dependence on exposure time. Plasma treatment time of 240 s led to log10 CFU/g of Salmonella Enteritidis to below detection level (1.0 log10 CFU/g) from initial population of 7.64 log10 CFU/g. After treatment with DCSBD plasma for 300 s, the populations of Bacillus subtilis and Bacillus subtilis endospores were decreased by 2.85 log10 CFU/g and 1.70 log10 CFU/g, respectively. The parameters related to the decontamination effect were measured. Temperature of samples does not exceed the value declared as low-temperature limit and water activity decreased after plasma treatment. The effect of plasma on the qualitative properties of allspice studied by infrared spectroscopy showed no changes in characteristic chemical bonds on the surface and also inside the samples. Measurements of polyphenolics content in allspice showed that plasma has negligible impact on these main constituents affecting taste and flavor. The experiments demonstrated an efficient reduction in microbial contamination and minimal influence on the aroma profile of treated and stored spice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McKee LH (1995) Microbial contamination of spices and herbs: a review. LWT Food Sci Technol 28:1–11. https://doi.org/10.1016/S0023-6438(95)80004-2

    Article  CAS  Google Scholar 

  2. Atungulu GG, Pan Z (2012) Microbial decontamination of nuts and spices. Microbial decontamination in the food industry: novel methods and applications. Woodhead Publishing Limited, Cambridge, pp 125–162

    Chapter  Google Scholar 

  3. Song WJ, Sung HJ, Kim SY et al (2014) Inactivation of Escherichia coli O157: H7 and Salmonella Typhimurium in black pepper and red pepper by gamma irradiation. Int J Food Microbiol 172:125–129. https://doi.org/10.1016/j.ijfoodmicro.2013.11.017

    Article  CAS  PubMed  Google Scholar 

  4. Hertwig C, Meneses N, Mathys A (2018) Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: a review. Trends Food Sci Technol 77:131–142. https://doi.org/10.1016/j.tifs.2018.05.011

    Article  CAS  Google Scholar 

  5. Jung K, Song BS, Kim MJ et al (2015) Effect of X-ray, gamma ray, and electron beam irradiation on the hygienic and physicochemical qualities of red pepper powder. LWT Food Sci Technol 63:846–851. https://doi.org/10.1016/j.lwt.2015.04.030

    Article  CAS  Google Scholar 

  6. Lilie M, Hein S, Wilhelm P, Mueller U (2007) Decontamination of spices by combining mechanical and thermal effects—an alternative approach for quality retention. Int J Food Sci Technol 42:190–193. https://doi.org/10.1111/j.1365-2621.2006.01204.x

    Article  CAS  Google Scholar 

  7. Erdogdu SB, Eliasson L, Erdogdu F et al (2015) Experimental determination of penetration depths of various spice commodities (black pepper seeds, paprika powder and oregano leaves) under infrared radiation. J Food Eng 161:75–81. https://doi.org/10.1016/j.jfoodeng.2015.03.036

    Article  CAS  Google Scholar 

  8. Molnár H, Bata-Vidács I, Baka E et al (2018) The effect of different decontamination methods on the microbial load, bioactive components, aroma and colour of spice paprika. Food Control 83:131–140. https://doi.org/10.1016/j.foodcont.2017.04.032

    Article  CAS  Google Scholar 

  9. Niemira BA (2012) Cold plasma decontamination of foods. Annu Rev Food Sci Technol 3:125–142. https://doi.org/10.1146/annurev-food-022811-101132

    Article  CAS  PubMed  Google Scholar 

  10. Pankaj SK, Wan Z, Keener KM (2018) Effects of cold plasma on food quality: a review. Foods 7:4. https://doi.org/10.3390/foods7010004

    Article  CAS  PubMed Central  Google Scholar 

  11. Misra NN, Jo C (2017) Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci Technol 64:74–86

    Article  CAS  Google Scholar 

  12. Hertwig C, Reineke K, Ehlbeck J et al (2015) Impact of remote plasma treatment on natural microbial load and quality parameters of selected herbs and spices. J Food Eng 167:12–17. https://doi.org/10.1016/j.jfoodeng.2014.12.017

    Article  CAS  Google Scholar 

  13. Schulz A, Voesgen W, Aurich S et al (2011) Decontamination of black peppercorn (Piper nigrum L.) using microwave-generated low pressure air plasma. In: CIGR Int Symp Sustain Bioprod—Water, Energy Food, pp 4–9

  14. Černák M, Kováčik D, Ráhel’ J et al (2011) Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys Control Fusion 53:124031. https://doi.org/10.1088/0741-3335/53/12/124031

    Article  CAS  Google Scholar 

  15. Siemer C, Toepfl S, Heinz V (2014) Inactivation of Bacillus subtilis spores by pulsed electric fields (PEF) in combination with thermal energy II. Modeling thermal inactivation of B. subtilis spores during PEF processing in combination with thermal energy. Food Control 39:244–250. https://doi.org/10.1016/j.foodcont.2013.09.067

    Article  CAS  Google Scholar 

  16. Mošovská S, Medvecká V, Halászová N et al (2018) Cold atmospheric pressure ambient air plasma inhibition of pathogenic bacteria on the surface of black pepper. Food Res Int 106:862–869. https://doi.org/10.1016/j.foodres.2018.01.066

    Article  CAS  PubMed  Google Scholar 

  17. Metselaar KI, Den Besten HMW, Abee T et al (2013) Isolation and quantification of highly acid resistant variants of Listeria monocytogenes. Int J Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2013.08.011

    Article  PubMed  Google Scholar 

  18. Yu L, Haley S, Perret J, Harris M (2004) Comparison of wheat flours grown at different locations for their antioxidant properties. Food Chem 86:11–16. https://doi.org/10.1016/j.foodchem.2003.08.037

    Article  CAS  Google Scholar 

  19. Kreft I, Fabjan N, Yasumoto K (2006) Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chem. https://doi.org/10.1016/j.foodchem.2005.05.081

    Article  Google Scholar 

  20. Dababneh BF (2013) An innovative microwave process for microbial decontamination of spices and herbs. Afr J Microbiol Res. https://doi.org/10.5897/AJMR12.1487

    Article  Google Scholar 

  21. Hertwig C, Reineke K, Ehlbeck JJ et al (2015) Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control 55:221–229. https://doi.org/10.1016/j.foodcont.2015.03.003

    Article  CAS  Google Scholar 

  22. Ziuzina D, Patil S, Cullen PJ et al (2014) Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol 42:109–116. https://doi.org/10.1016/j.fm.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  23. Higgins D, Dworkin J (2012) Recent progress in Bacillus subtilis sporulation. FEMS Microbiol Rev 36:131–148. https://doi.org/10.1111/j.1574-6976.2011.00310.x

  24. Phillips ZEV, Strauch MA (2002) Bacillus subtilis sporulation and stationary phase gene expression. Cell Mol Life Sci 59(3):392-402. https://doi.org/10.1007/s00018-002-8431-9

  25. Blank G, Al-Khayat M, Ismond MAH (1987) Germination and heat resistance of Bacillus subtilis spores produced on clove and eugenol based media. Food Microbiol. https://doi.org/10.1016/0740-0020(87)90016-5

    Article  Google Scholar 

  26. Rema J, Krishnamoorthy B (2012) Allspice. In: Peter KV (ed) Handbook of herbs and spices. Woodhead Publishing Limited, Cambridge, UK, pp 166–192

  27. Zahoranova A, Henselova M, Hudecova D et al (2016) Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem Plasma Process 36:397–414. https://doi.org/10.1007/s11090-015-9684-z

    Article  CAS  Google Scholar 

  28. Sperber WH (2016) Influence of water activity on foodborne bacteria—a review. J Food Prot 46:142–150. https://doi.org/10.4315/0362-028x-46.2.142

    Article  Google Scholar 

  29. Rockland LB, Nishi SK (1980) Influence of water activity on food product quality and stability. Food Toxicol 34(1):42–59

  30. Schulz H, Baranska M (2007) Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc 43:13–25. https://doi.org/10.1016/j.vibspec.2006.06.001

    Article  CAS  Google Scholar 

  31. Cruz-Olivares J, Pérez-Alonso C, Barrera-Díaz C et al (2010) Inside the removal of lead(II) from aqueous solutions by De-Oiled Allspice Husk in batch and continuous processes. J Hazard Mater 181:1095–1101. https://doi.org/10.1016/j.jhazmat.2010.05.127

    Article  CAS  PubMed  Google Scholar 

  32. Cruz-Olivares J, Pérez-Alonso C, Barrera-Díaz C et al (2011) Thermodynamical and analytical evidence of lead ions chemisorption onto Pimenta dioica. Chem Eng J 166:814–821. https://doi.org/10.1016/j.cej.2010.11.041

    Article  CAS  Google Scholar 

  33. Torres-Blancas T, Roa-Morales G, Fall C et al (2013) Improving lead sorption through chemical modification of de-oiled allspice husk by xanthate. Fuel 110:4–11. https://doi.org/10.1016/j.fuel.2012.11.013

    Article  CAS  Google Scholar 

  34. Palma-Anaya E, Fall C, Torres-Blancas T et al (2017) Pb(II) removal process in a packed column system with xanthation-modified deoiled allspice husk. J Chem. https://doi.org/10.1155/2017/4296515

    Article  Google Scholar 

  35. Stewart TA, Lowe HIC, Watson CT (2016) (Allspice) essential oil extracted via hydrodistillation, solvent and super critical fluid extraction methodologies. Am J Essent Oils Nat Prod 4:27–30

    Google Scholar 

  36. Linstrom PJ, Mallard WG (2018) Eugenol. In: NIST Chem. Webb. https://webbook.nist.gov/cgi/cbook.cgi?ID=C97530&Type=IR-SPEC&Index=1. Accessed 15 Jan 2020

  37. Nuchuchua O, Saesoo S, Sramala I et al (2009) Physicochemical investigation and molecular modeling of cyclodextrin complexation mechanism with eugenol. Food Res Int 42:1178–1185. https://doi.org/10.1016/j.foodres.2009.06.006

    Article  CAS  Google Scholar 

  38. Woranuch S, Yoksan R (2013) Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydr Polym 96:578–585. https://doi.org/10.1016/j.carbpol.2012.08.117

    Article  CAS  Google Scholar 

  39. Monteiro OS, Souza AG, Soledade LEB et al (2011) Chemical evaluation and thermal analysis of the essential oil from the fruits of the vegetable species Pimenta dioica Lindl. J Therm Anal Calorim 106:595–600. https://doi.org/10.1007/s10973-011-1438-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-16-0216. The authors would like to thank Ing. Pavol Ďurina, PhD. for SEM measurements of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika Medvecká.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subject.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvecká, V., Mošovská, S., Mikulajová, A. et al. Cold atmospheric pressure plasma decontamination of allspice berries and effect on qualitative characteristics. Eur Food Res Technol 246, 2215–2223 (2020). https://doi.org/10.1007/s00217-020-03566-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03566-0

Keywords

Navigation