Skip to main content

Advertisement

Log in

Applications of a SWAT model to evaluate the contribution of the Tafna catchment (north-west Africa) to the nitrate load entering the Mediterranean Sea

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

An elevated nitrogen concentration in water is one of the main problems affecting water quality in Mediterranean rivers. The objectives of this study were (1) to evaluate the contribution of the Tafna catchment to the nitrate load entering the Mediterranean Sea, (2) to quantify the impact of agriculture on the nitrate concentration in water bodies, (3) to evaluate nitrate loads entering groundwater, and (4) to quantify the role of reservoirs in nitrate retention. A SWAT model was applied during the period 2003 to 2011. The discharge calibration was based on a previous study by Zettam et al. (2017). NSE efficiencies ranged from 0.421 to 0.75, R2 ranged from 0.25 to 0.84, and PBIAS ranged from 3.68 to 39.42. The simulations of monthly nitrate loads were satisfactory in the upstream sampling stations, with NSE between 0.48 and 0.65 and R2 between 0.63 and 0.68. The PBIAS was satisfactory in all the sampling stations (− 36.30 to 10.42). In the downstream sampling stations, the calibration of the monthly nitrate loads was unsatisfactory (NSE ranged from − 0.26 to 0.21 and R2 ranged from 0.02 to 0.25). Fertilisation was the main N input in the catchment, while the main N output was plant uptake. The Tafna River carried an annual average of 37 to 85.5 t N year−1 into the Mediterranean Sea. The simulation also showed that reservoirs in the Tafna basin contain a large quantity of nitrates, i.e. 62% on average of the total amount of nitrates transported annually by the Tafna River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbaspour, K.C., (2007). User manual for SWAT-CUP SWAT calibration and uncertainty analysis programs. Swiss Federal Institute of Aquatic Science and Technology, Eawag,Dübendorf,Switzerland,<http://www.eawag.ch/organisation/abteilungen/siam/software/swat/index EN> (Last Accessed January 2010).

  • Abouabdillah, A., White, M., Arnold, J. G., De Girolamo, A. M., Oueslati, O., Maataoui, A., & Lo Porto, A. (2014). Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT. Soil Use and Management, 30(4), 539–549. https://doi.org/10.1111/sum.12146.

  • Aguilera, R., Marcé, R., & Sabater, S. (2015). Detection and attribution of global change effects on river nutrient dynamics in a large Mediterranean basin. Biogeosciences, 12, 4085–4098. https://doi.org/10.5194/bg-12-4085-2015.

    Article  CAS  Google Scholar 

  • Akhavan, S., Abedi-Koupaia, J., Mousavia, S., Afyunib, M., Eslamiana, S., & Abbaspour, K. (2010). Application of SWAT model to investigate nitrate leaching in Hamadan–Bahar watershed, Iran. Agriculture, Ecosystems and Environment, 139, 675–688.

    CAS  Google Scholar 

  • Algerian Ministry of Agriculture, (2012). Statistiques Agricoles de la wilaya de Tlemcen et Ain Temouchent.

  • Algerian Ministry of Water Resources, (2012). Document of surface water resources mobilization.

  • ANRH, (2003). Map of annual rainfall in the north of Algeria.

    Google Scholar 

  • ANRH, (2012). Daily data flow in the outlet of Tafna catchment from 2000 to 2011.

    Google Scholar 

  • Aouissi, J., Benabdallah, S., Chabaâne, Z., Cudennec, C., (2016). Evaluation of potential evapotranspiration assessment methods for hydrological modelling with SWAT—Application in data-scarce rural Tunisia, Agricultural Water Management, Article in Press 13.

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large-area hydrologic modeling and assessment: Part I Model development. Journal of the American Water Resources Association, 34, 73–89.

    CAS  Google Scholar 

  • Baker, T. J., & Miller, S. N. (2013). Using the soil and water assessment tool (SWAT) to assess land use impact on water resources in an East African watershed. Journal of Hydrology, 486, 100–111.

    Google Scholar 

  • Barbut, M.M., Durand, M.J-H, (1952). Carte des Sols d'Algérie. Oran. Feuille N.I. 30-N.E, Service Géographique de l'Armée.

  • Beasley, D., Huggins, L., & Monke, E. J. (1980). Answers: a model for watershed planning. Transactions of ASAE, 23, 938–944.

    Google Scholar 

  • Beaujouan, V., Durand, P., Ruiz, L., Aurousseau, P., & Cotteret, G. (2002). A hydrological model dedicated to topography-based simulation of nitrogen transfer and transformation: rationale and application to the geomorphology- denitrification relationship. Hydrological Processes, 16(2), 493–507. https://doi.org/10.1002/hyp.327.

    Article  Google Scholar 

  • Bemmoussat, A., Adjim, M., & Bensaoula, F. (2014). Etude des eaux souterraines de la plaine d’Henaya (bassin de la Tafna - NW Algerien). Larhyss Journal, 18(2014), 63–76.

    Google Scholar 

  • Benabdelkader, A., Taleb, A., Probst, J. L., Belaidi, N., & Probst, A. (2018). Anthropogenic contribution and influencing factors on metal features in fluvial sediments from a semi-arid Mediterranean river basin (Tafna River, Algeria): a multi-indices approach. Science of the Total Environment, 626, 899–914.

    CAS  Google Scholar 

  • Boithias, L., Srinivasan, R., Sauvage, S., Macary, F., & Sánchez-Pérez, J. M. (2014). Daily nitrate losses: Implication on long-term river quality in an intensive agricultural catchment of Southwestern France. Journal of Environmental Quality, 43, 46–54.

    Google Scholar 

  • Bottcher, A., Hiscock, J., Jacobson, B., & WAM-View. (2002). A GIS approach to watershed assessment modeling. Ft Lauderdale: Tech. rep., Water Environment Federation.

    Google Scholar 

  • Boualla, N., Hadj Hassan, B., Benzian, A., & Derrich, Z. (2011). Variabilité et répartition des nitrates dans les systèmes aquifères : Cas du bassin sebkha d’Oran (p. 10).

    Google Scholar 

  • Boufekane, A., & Saighi, O. (2013). Assessment of groundwater pollution by nitrates using intrinsic vulnerability methods: a case study of the Nil valley groundwater (Jijel, North-East Algeria). African Journal of Environmental Science and Technology, 7(10), 949–960. https://doi.org/10.5897/AJEST2013.1428.

    Article  CAS  Google Scholar 

  • Bouraoui, F., Benabdallah, S., Jrad, A., & Bidoglio, G. (2005). Application of the SWAT model on the Medjerdariver basin (Tunisia). Physics and Chemistry of the Earth, 30, 497–507.

    Google Scholar 

  • Bouzid-Lagha, S., & Djelita, B. (2012). Study of eutrophication in the Hamman Boughrara reservoir (Wilaya de Tlemcen, Algeria). Hydrological Sciences Journal, 57, 186–201.

    CAS  Google Scholar 

  • Bracken, L. J., Wainwright, J., Ali, G. A., Tetzlaff, D., Smith, M. W., Reaney, S. M., & Roy, A. G. (2013). Concepts of hydrological connectivity: research approaches, pathways and future agendas. Earth-Science Reviews, 119, 17–34. https://doi.org/10.1016/j.earscirev.2013.02.001.

    Article  Google Scholar 

  • Briak, H., Moussadek, R., Aboumaria, K., & Mrabet, R. (2016). Assessing sediment yield in Kalaya gauged watershed (Northern Morocco) using GIS and SWAT model. International Soil and Water Conservation Research, 4, 177–185.

    Google Scholar 

  • Briak, H., Mrabet, R., Moussadek, R., & Aboumaria, K. (2019). Use of a calibrated SWAT model to evaluate the effects of agricultural BMPs on sediments of the Kalaya river basin (North of Morocco). International Soil and Water Conservation Research., 7, 176–183. https://doi.org/10.1016/j.iswcr.2019.02.002.

    Article  Google Scholar 

  • Brown, L. C., & Barnwell Jr., T. O. (1987). The enhanced water quality models QUAL2E and QUAL2E-UNCAS: documentation and user manual. Athens, GA: U.S. Environmental Protection Agency.

    Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559–568.

    Google Scholar 

  • Chow, V. T., Maidment, D. R. & Mays, L. W. (eds) (1988) Applied Hydrology. McGraw-Hill Inc., New York, USA.

  • Curie, F., Ducharne, A., Bendjoudi, H., & Billen, G. (2011). Spatialization of denitrification by river corridors in regional-scale watersheds: case study of the seine river basin. Physics and Chemistry of the Earth, 36, 530–538.

    Google Scholar 

  • Daniel, C., Le Boeuf, P., Dobbins, & Abkowitz. (2011). Watershed modèleing and its applications: a state-of-the-art review. Open Hydrology Journal, 5(2), 26–50.

    Google Scholar 

  • Danvi, A., Giertz, S., Zwart, S. J., & Diekkrüger, B. (2017). Comparing water quantity and quality in three inland valley watersheds with different levels of agricultural development in Central Benin. Agricultural Water Management, 192, 257–270. https://doi.org/10.1016/j.agwat.2017.07.017.

    Article  Google Scholar 

  • Demdoum, A., Hamed, Y., Feki, M., Hadji, R., & Djebbar, M. (2014). Multi-tracer investigation of groundwater in El Eulma Basin (northwestern Algeria), North Africa. Arabian Journal of Geosciences, 8(5), 3321–3333. https://doi.org/10.1007/s12517-014-1377-z.

    Article  CAS  Google Scholar 

  • Ferrant, S. (2009). Modélisation agro-hydrologique des transferts de nitrates à l'échelle des bassins versants agricoles gascons, thèse de doctorat (209p). Université de Toulouse- France.

  • Ferrant, S., Durand, P., Eric, J. E., Probst, J. L., & Sanchez-Pérez, J. M. (2013). Simulating the long term impact of nitrate mitigation scenarios in a pilot study basin. Agricultural Water Management, 124, 85–96.

    Google Scholar 

  • Fertial. (2010). Manuel: fertilization in Algeria (p. 100).

    Google Scholar 

  • Fu, B., Merritt, W. S., Croke, B. F. W., Weber, T., & Jakeman, A. J. (2018). A review of catchment-scale water quality and erosion models and a synthesis of future prospects. Environmental Modelling & Software., 114, 75–97. https://doi.org/10.1016/j.envsoft.2018.12.008.

    Article  Google Scholar 

  • Gold, A. J., Addy, K., Morrison, A., & Simpson, M. (2016). Will dam removal increase nitrogen flux to estuaries. Water, 8, 522. https://doi.org/10.3390/w8110522.

    Article  CAS  Google Scholar 

  • Guardia, P., (1975). Géodynamique de la marge alpine du continent africain. D’après l’étude de l’Oranie nord occidentale. Relations structurales et paléogéographiques entre le tell extrème et l’avant pays atlassique+ carte au 1/100 000, Thèse 3 ème cycle. Université de Nice, p. 285.

  • Guoqing, L., Xiaoyu, M., Jidong, D., & Xilai, Z. (2012). Temporal evolution of water quality in the typical semiarid regiona. Procedia Environmental Sciences, 12, 1411–1418.

    Google Scholar 

  • Haddou, K., Bendaoud, A., Belaidi, N., & Taleb, A. (2018). A large-scale study of hyporheic nitrate dynamics in a semi-arid catchment, the Tafna River, in Northwest Algeria. Environmental Earth Sciences, 77, 520.

    Google Scholar 

  • Hallouz, F., Meddi, M., Mahé, G., Alirahmani, S., & Keddar, A. (2017). Modeling of discharge and sediment transport through the SWAT model in the basin of Harraza (northwest of Algeria). Water Science. https://doi.org/10.1016/j.wsj.2017.12.004.

  • Hamiche, A., Boudghene Stambouli, A., & Flaz, I. S. (2015). A review on the water and energy sectors in Algeria: current forecasts, scenario and sustainability issues. Renewable and Sustainable Energy Reviews, 41, 261–276.

    Google Scholar 

  • Holvoet, K., Van Griensven, A., Gevaert, V., Seuntjens, P., & Vanrolleghem, P. A. (2008). Modifications to the SWAT code for modelling direct pesticide losses. Environmental Modelling & Software, 23(1), 72–81. https://doi.org/10.1016/j.envsoft.2007.05.002.

    Article  Google Scholar 

  • Khaldi, A., (2005). Impacts de la sécheresse sur le régime des écoulements souterrains dans les massifs calcaires de l’Ouest Algérien « Monts de Tlemcen-Saida ». Thèse (Doctorat), Universié Mascara, Algérie. Disponible à: http://hydrologie.org/THE/KHALDI.pdf

  • Krysanova, V., Müller-Wohlfeil, D.-I., & Becker, A. (1998). Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecological Modelling, 106(2–3), 261–289. https://doi.org/10.1016/s0304-3800(97)00204-4.

    Article  CAS  Google Scholar 

  • Lam, Q. D., Schmalz, B., & Fohrer, N. (2010). Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model. Agricultural Water Management, 97(2), 317–325. https://doi.org/10.1016/j.agwat.2009.10.004.

    Article  Google Scholar 

  • Laurent, F., & Ruelland, D. (2011). Assessing impacts of alternative land use and agricultural practices on nitrate pollution at the catchment scale. Journal of Hydrology, 409, 440–450.

    CAS  Google Scholar 

  • Lefrancq, M., Jadas-Hécart, A., La Jeunesse, I., Landry, D., & Payraudeau, S. (2017). High frequency monitoring of pesticides in runoff water to improve understanding of their transport and environmental impacts. Science of the Total Environment, 587–588, 75–86. https://doi.org/10.1016/j.scitotenv.2017.02.022.

    Article  CAS  Google Scholar 

  • Libutti, A., & Monteleone, M. (2017). Soil vs. groundwater: the quality dilemma. Managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions. Agricultural Water Management, 186, 40–50.

    Google Scholar 

  • Ligaray, M., Kim, M., Baek, S. S., Ra, J.-S., Chun, J. A., Park, Y., Boithias, L., Ribolzi, O., Chon, K., & Cho, K. H. (2017). Modeling the fate and transport of malathion in the Pagsanjan-Lumban Basin, Philippines. Water, 9, 451. https://doi.org/10.3390/w907045.

    Article  Google Scholar 

  • Lotz, T., Opp, C., & He, X. (2018). Factors of runoff generation in the Dongting Lake basin based on a SWAT model and implications of recent land cover change. Quaternary International, 475, 54–62. https://doi.org/10.1016/j.quaint.2017.03.057.

  • Malagó, A., Bouraoui, F., Vigiak, O., Grizzetti, B., & Pastori, M. (2017). Modelling water and nutrient fluxes in the Danube River Basin with SWAT. Science of the Total Environment, 603–604, 196–218.

    Google Scholar 

  • Markhi, A., Laftouhi, N., Grusson, Y., & Soulaimani, A. (2019). Assessment of potential soil erosion and sediment yield in the semi-arid N′fis basin (High Atlas, Morocco) using the SWAT model. Acta Geophysica, 67, 263–272. https://doi.org/10.1007/s11600-019-00251-z.

    Article  Google Scholar 

  • Meaurio, M., Zabaleta, A., Boithias, L., Epelde, A. M., Sauvage, S., Sánchez-Pérez, J.-M., Srinivasan, R., & Antigüedad, I. (2017). Assessing the hydrological response from an ensemble of CMIP5 climate projections in the transition zone of the Atlantic region (Bay of Biscay). Journal of Hydrology, 548, 46–62. https://doi.org/10.1016/j.jhydrol.2017.02.029.

    Article  Google Scholar 

  • Mehdi, B., Ludwig, R., & Lehner, B. (2015). Evaluating the impacts of climate change and crop land use change on streamflow, nitrates and phosphorus: a modeling study in Bavaria. Journal of Hydrology: Regional Studies, 4, 60–90. https://doi.org/10.1016/j.ejrh.2015.04.009.

    Article  Google Scholar 

  • Merrington, G., Winder, L., Parkinson, R., & Redman, M. (2002). Agricultural pollution: environmental problems and practical solutions. London: Spon Press.

    Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulation. American Society of Agricultural and Biological Engineers ISSN 0001–235, 50(3), 885–900.

    Google Scholar 

  • Nash, J. E., & Sutcliffe, V. (1970). River flow forecasting through conceptual models: Part I A discussion of principles. Journal of Hydrology, 10, 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.

    Article  Google Scholar 

  • National Agency of Hydrologic Resources (ANRH). (2003a). Map of average annual runoff in the north of Algeria. Alger: ANRH.

    Google Scholar 

  • National Agency of Hydrologic Resources (ANRH). (2003b). Map of potential evapotranspiration in the north of Algeria. Alger: ANRH.

    Google Scholar 

  • National Agency of Hydrologic Resources (ANRH). (2003c). Map of groundwater resources in the north of Algeria. Alger: ANRH.

    Google Scholar 

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Srinivasan, R., & Williams, J. R. (2005). Soil and water assessment tool, theoretical documentation: Version 2005. USDA Agricultural Research Service and Texas A&M Blackland Research Center, Temple.

  • Oeurng, C., Sauvage, S., & Sánchez-Pérez, J. M. (2010). Temporal variability of nitrate transport through hydrological response during flood events within a large agricultural catchment in south–west France. Science Total of the Environment, 409, 140–149.

    CAS  Google Scholar 

  • Ounissi, M., & Bouchareb, N. (2013). Nutrient distribution and fluxes from three Mediterranean coastal rivers (NE Algeria) under large damming, C. R. Geoscience, 345, 81–92.

    CAS  Google Scholar 

  • Ounissi, M., Ziouch, O., & Aounallah, O. (2014). Variability of the dissolved nutrient (N, P, Si) concentrations in the bay of Annaba in relation to the inputs of the Seybouse and Mafragh estuaries. Marine Pollution Bulletin, 80, 234–244.

    CAS  Google Scholar 

  • Özcan, Z., Kentel, E., & Alp, E. (2017). Evaluation of the best management practices in a semi-arid region with high agricultural activity. Agricultural Water Management, 194, 160–171. https://doi.org/10.1016/j.agwat.2017.09.007.

    Article  Google Scholar 

  • Pavoni, B. (2003). Nitriti e nitrati nelle acque e negli alimenti. Fertilizzanti, 11, 17–18.

    Google Scholar 

  • Petry, J., Soulsby, C., Malcolm, I., & Youngson, A. (2002). Hydrological controls on nutrient concentrations and fluxes in agricultural catchments. Science Total of the Environmnt, 294, 95–110. https://doi.org/10.1016/S0048-9697(02)00058-X.

    Article  CAS  Google Scholar 

  • Probst, J. L. (1985). Nitrogen and phosphorus exportation in the Garonne basin (France). Journal of Hydrology, 76, 281–305. https://doi.org/10.1016/0022-1694(85)90138-6.

    Article  CAS  Google Scholar 

  • Remini, B. (2005). La problématique de l’eau en Algérie (p. 162). Office des publications Universitaires.

  • Rostamian, R., Jaleh, A., Afyuni, M., Farhad Mousavi, S., Heidarpour, M., Jalalian, A., & Abbaspour, K. (2008). Application of a SWAT model for estimating runoff and sediment in two mountainous basins in Central Iran. Hydrological Sciences Journal, 53(5), 977–988. https://doi.org/10.1623/hysj.53.5.977.

    Article  Google Scholar 

  • Sauvage, S., Sánchez-Pérez, J.-M., Vervier, P., Naiman, R.-J., Alexandre, H., Bernard-Jannin, L., Boulêtreau, S., Delmotte, S., Julien, F., Peyrard, D., Sun, X., & Gerino, M. (2018). Modelling the role of riverbed compartments in the regulation of water quality as an ecological service. Ecological Enginering, 118, 19–30.

    Google Scholar 

  • Sellami, H., Benabdallah, S., La Jeunesse, I., & Vanclooster, M. (2016). Quantifying hydrological responses of small Mediterranean catchments under climate change projections. Science of the Total Environment, 543, 924–936.

    CAS  Google Scholar 

  • Sharma, P., Shukla, M. K., Sammis, T. W., Steiner, R. L., & Mexal, J. G. (2012). Nitrate-nitrogen leaching from three specialty crops of New Mexico under furrow irrigation system. Agricultural Water Management, 109, 71–80.

    Google Scholar 

  • Singh, A., & Gosain, A. K. (2011). Climate-change impact assessment using GIS based hydrological modelling. Water International, 36(3), 386–397. https://doi.org/10.1080/02508060.2011.586761.

    Article  Google Scholar 

  • Souza, J. O. P., Correa, A. C. B., & Gary, J. B. (2016). An approach to assess the impact of landscape connectivity and effective catchment area upon bedload sediment flux in Saco CreekWatershed, Semiarid Brazil. Catena, 138, 13–29.

    Google Scholar 

  • Taleb, A., Belaidi, N., & Gagneur, J. (2004). Water quality before and after dam building on a heavily polluted river in semi-arid Algeria. River Research and Applications, 20, 943–956.

    Google Scholar 

  • Taleb, A., Belaidi, N., Sánchez-Pérez, J. M., Vervier, P., Sauvage, S., & Gagneur, J. (2008). The role of the hyporheic zone of a semi-arid gravel bed stream located downstream of a heavily polluted reservoir (Tafnawadi, Algeria). River Research and Applications, 24(2), 183–196.

    Google Scholar 

  • Terink, W., Immerzeel, W., & Droogers, P. (2013). Climate change projections of precipitation and reference evapotranspiration for the Middle East and Northern Africa until 2050. International Journal of Climatology, 33, 3055–3072.

    Google Scholar 

  • Touati, B. (2010). Les barrages et la politique hydraulique en Algérie : état, diagnostic et perspectives d’un aménagement durable, Thèse de Doctorat (384p). Université de Constantine- Algérie.

  • USDA-SCS. (1972). National engineering handbook, section 4: hydrology. Washington, DC: Soil Conservation Service.

    Google Scholar 

  • Vagstad, N., Stälnacke, P., Andersen, H.-E., Deelstra, J., Jansons, V., Kyllmar, K., Loigu, E., Rekolainen, S., & Tumas, R. (2004). Regional variations in diffuse nitrogen losses from agriculture in the nordic and baltic regions. Hydrology & Earth System Sciences, 8, 651–662.

    CAS  Google Scholar 

  • Walling, D., & Webb, B. (1985). Nitrate behaviour in streamflow from a grassland catchment in Devon, U.K. Water Research, 19(8), 1005–1016.

    Google Scholar 

  • Whitehead, P., Wilson, E., & Butterfield, D. (1998). A semi-distributed integrated nitrogen model for multiple source assessment in catchment. Part 1. Model structure and process equations. Science of the Total Environment, 210-211, 547–558. https://doi.org/10.1016/s0048-9697(98)00037-0.

    Article  Google Scholar 

  • Williams, J. R. (1969). Flood routing with variable travel time or variable storage coefficients. Transactions of the ASAE, 12(1), 100–103.

    Google Scholar 

  • Wolfe, A. H., & Patz, J. A. (2002). Reactive nitrogen and human health: acute and long-term implications. Ambio, 31(2), 120–125.

    Google Scholar 

  • Zettam, A. (2018). Transfert des nitrates du bassin versant de la Tafna (Nord-Ouest de l'Algérie) vers la mer Méditerranée - approche couplant mesures, modélisation et changement d'échelle vers les grands bassins versants Nord africains. PhD, Ecologie Fonctionnelle, Institut National Polytechnique de Toulouse.

  • Zettam, A., Taleb, A., Sauvage, S., Boithias, L., Belaidi, N., & Sánchez-Pérez, J. M. (2017). Modelling hydrology and sediment transport in a semi-arid and anthropized catchment using the SWAT model: the case of the Tafna River (Northwest Algeria). Water, 9, 216.

    Google Scholar 

Download references

Funding

This project was funded by Algeria’s Ministry of Higher Education and Scientific Research (PNE 2015-2016), The General Direction of Scientific Research and Technological Development (DGRSDT) in Algeria and EcoLab of the University of Toulouse, CNRS, INPT, UPS, Toulouse, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Zettam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zettam, A., Taleb, A., Sauvage, S. et al. Applications of a SWAT model to evaluate the contribution of the Tafna catchment (north-west Africa) to the nitrate load entering the Mediterranean Sea. Environ Monit Assess 192, 510 (2020). https://doi.org/10.1007/s10661-020-08482-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08482-0

Keywords

Navigation