Skip to main content
Log in

A fractal derivative model to quantify bed-load transport along a heterogeneous sand bed

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Bed-load transport is a complex process exhibiting anomalous dynamics, which cannot be efficiently described using the traditional advection–diffusion equation. This study aims at developing and testing a Hausdorff fractal derivative model to characterize scale-dependent, anomalous dynamics of bed-load transport through a heterogeneous gravel-bed. Applications show that the Hausdorff fractal derivative model generally matches the bed sediment snapshots measured in flume experiments with both continuous and instantaneous sediment sources. The order of the Hausdorff fractal derivative is a scale-dependent indicator varying with bed heterogeneity and particle size. For example, bed armoring and size selective transport can cause the fast downstream motion of fine sediment and the enhanced trapping for coarse materials, which can be conveniently quantified by selecting the corresponding order of the Hausdorff fractal derivative in the new model proposed by this study. Further comparison with the fractional derivative model (containing a nonlocal operator to capture long-term memory embedded in both motion and resting of sediment particles) shows that both models can capture anomalous bed-load dynamics, while the Hausdorff fractal derivative model is more attractive due to its local operator and convenient numerical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Allwright A, Atangana A (2018) A Fractal advection–dispersion equation for groundwater transport in fractured aquifers with self-similarities. Eur Phys J Plus 133(2):1–20

    Google Scholar 

  2. Ancey C (2010) Stochastic modeling in sediment dynamics: Exner equation for planar bed incipient bed load transport conditions. J Geophys Res Earth 115(F2):1–21

    Google Scholar 

  3. Ancey C, Bohorquez P, Heyman J (2015) Stochastic interpretation of the advection-diffusion equation and its relevance to bed load transport. J Geophys Res Earth 120(12):2529–2551

    Google Scholar 

  4. Aubeneau AF, Martin RL, Bolster D, Schumer R, Jerolmack D, Packman A (2015) Fractal patterns in riverbed morphology produce fractal scaling of water storage times. Geophys Res Lett 42(13):5309–5315

    Google Scholar 

  5. Bagnold R (1973) The nature of saltation and of bed-load transport in water. Proc R Soc Lond Ser A 332(1591):473–504

    Google Scholar 

  6. Balankin AS, Elizarraraz BE (2012) Map of fluid flow in fractal porous medium into fractal continuum flow. Phys Rev E 85(5):1–21

    Google Scholar 

  7. Barry JJ, Buffington JM, King JG (2004) A general power equation for predicting bed load transport rates in gravel bed rivers. Water Resour Res 40(10):1–22

    Google Scholar 

  8. Bathurst JC (2007) Effect of coarse surface layer on bed-load transport. J Hydraul Eng 133(11):1192–1205

    Google Scholar 

  9. Benson DA, Wheatcraft SW, Meerschaert MM (2000) Application of a fractional advection-dispersion equation. Water Resour Res 36(6):1403–1412

    Google Scholar 

  10. Bradley DN, Tucker GE, Benson DA (2010) Fractional dispersion in a sand bed river. J Geophys Res Earth 115(F1):1–20

    Google Scholar 

  11. Butler JB, Lane SN, Chandler JH (2001) Characterization of the structure of river-bed gravels using two-dimensional fractal analysis. Math Geol 33(3):301–330

    Google Scholar 

  12. Cai W, Chen W, Xu WX (2016) Characterizing the creep of viscoelastic materials by fractal derivative models. Int J Nonlinear Mech 87:58–63

    Google Scholar 

  13. Chen W (2006) Time-space fabric underlying anomalous diffusion. Chaos Soliton Fract 28(4):923–929

    Google Scholar 

  14. Chen W, Sun HG, Zhang XD, Korošak D (2010) Anomalous diffusion modeling by fractal and fractional derivatives. Comput Math Appl 59(5):1754–1758

    Google Scholar 

  15. Chien N, Wan ZH (1999) Mechanics of sediment transport. ASCE Press, New York

    Google Scholar 

  16. Durafour M, Jarno A, Le Bot S, Lafite R, Marin F (2015) Bedload transport for heterogeneous sediments. Environ Fluid Mech 15(4):731–751

    Google Scholar 

  17. Einstein HA (1937) Bedload transport as a probability problem. Sedimentation 1027:C1–C105

    Google Scholar 

  18. Einstein HA (1950) The bed-load function for sediment transportation in open channel flows. US Department of Agriculture Washington, DC, vol 1026, pp 1–71

  19. Engelund F, Fredsøe J (1976) A sediment transport model for straight alluvial channels. Hydrol Res 7(5):293–306

    Google Scholar 

  20. Garde RJ, Diette S, Ali K (1977) Armoring process in degrading streams. J Hydraul Div 103(9):1091–1095

    Google Scholar 

  21. Hu ZH (2015) Tung XK (2015) A new discrete economic model involving generalized fractal derivative. Adv Diff Equ 65:1–11

    Google Scholar 

  22. Hurst D, Vassilicos J (2007) Scalings and decay of fractal-generated turbulence. Phys Fluids 19(3):1–31

    Google Scholar 

  23. Li J, Ostoja-Starzewski M (2013) Comment on hydrodynamics of fractal continuum flow and map of fluid flow in fractal porous medium into fractal continuum flow. Phys Rev E 88(5):1–4

    Google Scholar 

  24. Li LL, Zhang GG, Zhang JJ (2019) Formula of bed-load transport based on the total threshold probability. Environ Fluid Mech 19(2):569–581

    Google Scholar 

  25. Liang YJ, Allen QY, Chen W, Gatto RG, Colon-Perez L, Mareci TH, Magin RL (2016) A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging. Commun Nonlinear Sci 39:529–537

    Google Scholar 

  26. Lin GX (2015) An effective phase shift diffusion equation method for analysis of pfg normal and fractional diffusions. J Magn Reson 259:232–240

    Google Scholar 

  27. Lin GX (2016) Instantaneous signal attenuation method for analysis of pfg fractional diffusions. J Magn Reson 269:36–49

    Google Scholar 

  28. Meyer-Peter E, Müller R (1948) Formulas for bed-load transport. In: IAHSR 2nd meeting, Stockholm, appendix 2. IAHR

  29. Nikora V, Habersack H, Huber T, McEwan I (2002) On bed particle diffusion in gravel bed flows under weak bed load transport. Water Resour Res 38(6):1–9

    Google Scholar 

  30. Niño Y, García M (1998) Using lagrangian particle saltation observations for bedload sediment transport modelling. Hydrol Process 12(8):1197–1218

    Google Scholar 

  31. Papanicolaou AT, Tsakiris AG, Strom KB (2012) The use of fractals to quantify the morphology of cluster microforms. Geomorphology 139:91–108

    Google Scholar 

  32. Parker G (1990) Surface-based bedload transport relation for gravel rivers. J Hydraul Res 28(4):417–436

    Google Scholar 

  33. Parker G, Dhamotharan S, Stefan H (1982) Model experiments on mobile, paved gravel bed streams. Water Resour Res 18(5):1395–1408

    Google Scholar 

  34. Parker G, Wilcock PR (1993) Sediment feed and recirculating flumes: fundamental difference. J Hydraul Eng 119(11):1192–1204

    Google Scholar 

  35. Pelosi A, Parker G, Schumer R, Ma HB (2014) Exner-based master equation for transport and dispersion of river pebble tracers: derivation, asymptotic forms, and quantification of nonlocal vertical dispersion. J Geophys Res Earth 119(9):1818–1832

    Google Scholar 

  36. Recking A, Frey P, Paquier A, Belleudy P, Champagne JY (2008) Bed-load transport flume experiments on steep slopes. J Hydraul Eng 134(9):1302–1310

    Google Scholar 

  37. Reyes-Marambio J, Moser F, Gana F, Severino B, Calderón-Muñoz WR, Palma-Behnke R, Estevez PA, Orchard M, Cortés M (2016) A fractal time thermal model for predicting the surface temperature of air-cooled cylindrical li-ion cells based on experimental measurements. J Power Sources 306:636–645

    Google Scholar 

  38. Sayre W, Hubbell D (1965) Transport and dispersion of labeled bed material, north loup river, nebraska: Us geol. Survey Prof Paper 433:1–55

    Google Scholar 

  39. Sreenivasan K, Meneveau C (1986) The fractal facets of turbulence. J Fluid Mech 173:357–386

    Google Scholar 

  40. Strom K, Papanicolaou A, Evangelopoulos N, Odeh M (2004) Microforms in gravel bed rivers: formation, disintegration, and effects on bedload transport. J Hydraul Eng 130(6):554–567

    Google Scholar 

  41. Su XL, Chen W, Xu WX (2017) Characterizing the rheological behaviors of non-Newtonian fluid via a viscoelastic component: Fractal dashpot. Adv Mech Eng 9(10):1–12

    Google Scholar 

  42. Sumer BM, Chua LH, Cheng NS, Fredsøe J (2004) Influence of turbulence on bed load sediment transport. J Hydraul Eng 129(8):585–596

    Google Scholar 

  43. Sun HG, Chen D, Zhang Y, Chen L (2015) Understanding partial bed-load transport: experiments and stochastic model analysis. J Hydrol 521:196–204

    Google Scholar 

  44. Sun HG, Chen W (2009) Fractal derivative multi-scale model of fluid particle transverse accelerations in fully developed turbulence. Sci China Technol Sci 52(3):680–683

    Google Scholar 

  45. Sun HG, Meerschaert MM, Zhang Y, Zhu JT, Chen W (2013) A fractal richards equation to capture the non-Boltzmann scaling of water transport in unsaturated media. Adv Water Resour 52:292–295

    Google Scholar 

  46. Valyrakis M, Diplas P, Dancey CL (2011) Prediction of coarse particle movement with adaptive neuro-fuzzy inference systems. Hydrol Process 25(22):3513–3524

    Google Scholar 

  47. Wilcock PR, Kenworthy ST, Crowe JC (2001) Experimental study of the transport of mixed sand and gravel. Water Resour Res 37(12):3349–3358

    Google Scholar 

  48. Yalin MS (1963) An expression for bed-load transportation. J Hydr Eng Div 89(3):221–250

    Google Scholar 

  49. Zhang RJ, Xie JH, Chen WB (2007) River dynamics. Wuhan University Press, Wuhan

    Google Scholar 

  50. Zhang Y, Chen D, Garrard R, Sun HG, Lu YH (2016) Influence of bed clusters and size gradation on operational time distribution for non-uniform bed-load transport. Hydrol Process 30(17):3030–3045

    Google Scholar 

  51. Zhang Y, Martin RL, Chen D, Baeumer B, Sun HG, Chen L (2014) A subordinated advection model for uniform bed load transport from local to regional scales. J Geophys Res Earth 119(12):2711–2729

    Google Scholar 

  52. Zhang Y, Meerschaert MM, Packman AI (2012) Linking fluvial bed sediment transport across scales. Geophys Res Lett 39(20):1–6

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R & D Program of China (2017YFC0405203), the National Natural Science Foundation of China under Grants nos. 11972148, and the Fundamental Research Funds for the Central Universities under Grants Nos. 2019B16014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongGuang Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, S., Sun, H., Zhang, Y. et al. A fractal derivative model to quantify bed-load transport along a heterogeneous sand bed. Environ Fluid Mech 20, 1603–1616 (2020). https://doi.org/10.1007/s10652-020-09755-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-020-09755-5

Keywords

Navigation