Skip to main content

Advertisement

Log in

Metabolic crosstalk in the tumor microenvironment regulates antitumor immunosuppression and immunotherapy resisitance

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The successful treatment of human cancers by immunotherapy has been made possible by breakthroughs in the discovery of immune checkpoint regulators, including CTLA-4 and PD-1/PD-L1. However, the immunosuppressive effect of the tumor microenvironment still represents an important bottleneck that limits the success of immunotherapeutic approaches. The tumor microenvironment influences the metabolic crosstalk between tumor cells and tumor-infiltrating immune cells, creating competition for the utilization of nutrients and promoting immunosuppression. In addition, tumor-derived metabolites regulate the activation and effector function of immune cells through a variety of mechanisms; in turn, the metabolites and other factors secreted by immune cells can also become accomplices to cancer development. Immune-metabolic checkpoint regulation is an emerging concept that is being studied with the aim of restoring the immune response in the tumor microenvironment. In this review, we summarize the metabolic reprogramming of various cell types present in the tumor microenvironment, with a focus on the interaction between the metabolic pathways of these cells and antitumor immunosuppression. We also discuss the main metabolic checkpoints that could provide new means of enhancing antitumor immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, Li X, Xiong W, Li G, Zeng Z, Guo C (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8(5):761–773. https://doi.org/10.7150/jca.17648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Duan S, Guo W, Xu Z, He Y, Liang C, Mo Y, Wang Y, Xiong F, Guo C, Li Y, Li X, Li G, Zeng Z, Xiong W, Wang F (2019) Natural killer group 2D receptor and its ligands in cancer immune escape. Molecular Cancer 18(1):29. https://doi.org/10.1186/s12943-019-0956-8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gonzalez H, Hagerling C, Werb Z (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 32(19–20):1267–1284. https://doi.org/10.1101/gad.314617.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Peng M, Mo Y, Wang Y, Wu P, Zhang Y, Xiong F, Guo C, Wu X, Li Y, Li X, Li G, Xiong W, Zeng Z (2019) Neoantigen vaccine: an emerging tumor immunotherapy. Molecular Cancer 18(1):128. https://doi.org/10.1186/s12943-019-1055-6

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara H, Signori E, Honoki K, Georgakilas AG, Amin A, Helferich WG, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Keith WN, Bilsland A, Bhakta D, Halicka D, Fujii H, Aquilano K, Ashraf SS, Nowsheen S, Yang X, Choi BK, Kwon BS (2015) Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol 35(Suppl):S185–S198. https://doi.org/10.1016/j.semcancer.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  6. Saleh R, Elkord E (2019) Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.07.017

    Article  PubMed  Google Scholar 

  7. Herbel C, Patsoukis N, Bardhan K, Seth P, Weaver JD, Boussiotis VA (2016) Clinical significance of T cell metabolic reprogramming in cancer. Clin Transl Med 5(1):29. https://doi.org/10.1186/s40169-016-0110-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Biswas SK (2015) Metabolic Reprogramming of Immune Cells in Cancer Progression. Immunity 43(3):435–449. https://doi.org/10.1016/j.immuni.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  9. Chodon T, Koya RC, Odunsi K (2015) Active Immunotherapy of Cancer. Immunol Invest 44(8):817–836. https://doi.org/10.3109/08820139.2015.1096684

    Article  CAS  PubMed  Google Scholar 

  10. Tey SK (2014) Adoptive T-cell therapy: adverse events and safety switches. Clin Transl Immunol 3(6):e17. https://doi.org/10.1038/cti.2014.11

    Article  CAS  Google Scholar 

  11. Sadelain M, Riviere I, Riddell S (2017) Therapeutic T cell engineering. Nature 545(7655):423–431. https://doi.org/10.1038/nature22395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dong H, Zhu G, Tamada K, Chen L (1999) B7–H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5(12):1365–1369. https://doi.org/10.1038/70932

    Article  CAS  PubMed  Google Scholar 

  13. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271(5256):1734–1736. https://doi.org/10.1126/science.271.5256.1734

    Article  CAS  PubMed  Google Scholar 

  14. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. https://doi.org/10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ren D, Hua Y, Yu B, Ye X, He Z, Li C, Wang J, Mo Y, Wei X, Chen Y, Zhou Y, Liao Q, Wang H, Xiang B, Zhou M, Li X, Li G, Li Y, Zeng Z, Xiong W (2020) Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Molecular Cancer 19(1):19. https://doi.org/10.1186/s12943-020-1144-6

    Article  PubMed  PubMed Central  Google Scholar 

  16. Walker LS, Sansom DM (2015) Confusing signals: recent progress in CTLA-4 biology. Trends Immunol 36(2):63–70. https://doi.org/10.1016/j.it.2014.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buchbinder EI, Desai A (2016) CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol 39(1):98–106. https://doi.org/10.1097/COC.0000000000000239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hahn AW, Gill DM, Pal SK, Agarwal N (2017) The future of immune checkpoint cancer therapy after PD-1 and CTLA-4. Immunotherapy 9(8):681–692. https://doi.org/10.2217/imt-2017-0024

    Article  CAS  PubMed  Google Scholar 

  19. Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, Krzysiek R, Knutson KL, Daniel B, Zimmermann MC, David O, Burow M, Gordon A, Dhurandhar N, Myers L, Berggren R, Hemminki A, Alvarez RD, Emilie D, Curiel DT, Chen L, Zou W (2003) Blockade of B7–H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9(5):562–567. https://doi.org/10.1038/nm863

    Article  CAS  PubMed  Google Scholar 

  20. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454. https://doi.org/10.1056/NEJMoa1200690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. https://doi.org/10.1056/NEJMoa1003466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mok TSK, Wu YL, Kudaba I, Kowalski DM, Cho BC, Turna HZ, Castro G Jr, Srimuninnimit V, Laktionov KK, Bondarenko I, Kubota K, Lubiniecki GM, Zhang J, Kush D, Lopes G, Investigators K (2019) Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 393(10183):1819–1830. https://doi.org/10.1016/S0140-6736(18)32409-7

    Article  CAS  PubMed  Google Scholar 

  23. Jenkins RW, Barbie DA, Flaherty KT (2018) Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 118(1):9–16. https://doi.org/10.1038/bjc.2017.434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, Iyer AK (2017) PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Front Pharmacol 8:561. https://doi.org/10.3389/fphar.2017.00561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee A, Sun S, Sandler A, Hoang T (2018) Recent progress in therapeutic antibodies for cancer immunotherapy. Curr Opin Chem Biol 44:56–65. https://doi.org/10.1016/j.cbpa.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  26. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  27. Ramapriyan R, Caetano MS, Barsoumian HB, Mafra ACP, Zambalde EP, Menon H, Tsouko E, Welsh JW, Cortez MA (2019) Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharmacol Ther 195:162–171. https://doi.org/10.1016/j.pharmthera.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  28. Boroughs LK, DeBerardinis RJ (2015) Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 17(4):351–359. https://doi.org/10.1038/ncb3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X, Li Y, Li G, Xiong W, Guo C, Zeng Z (2019) Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Molecular Cancer 18(1):10. https://doi.org/10.1186/s12943-018-0928-4

    Article  PubMed  PubMed Central  Google Scholar 

  30. DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2(5):e1600200. https://doi.org/10.1126/sciadv.1600200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang XJ, Wang J, Deng XY, Li XL, Li XY, Zeng ZY, Xiong W, Li GY, Xiong F, Guo C (2018) Immunotherapy targeted to immune checkpoint: a revolutionary breakthrough in cancer therapy. Prog Biochem Biophys 45(11):1178–1186. https://doi.org/10.16476/j.pibb.2018.0264

    Article  Google Scholar 

  32. Phan LM, Yeung SC, Lee MH (2014) Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med 11(1):1–19. https://doi.org/10.7497/j.issn.2095-3941.2014.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pavlova NN, Thompson CB (2016) The Emerging Hallmarks of Cancer Metabolism. Cell Metab 23(1):27–47. https://doi.org/10.1016/j.cmet.2015.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rinaldi G, Rossi M, Fendt SM (2018) Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape. Wiley Interdiscip Rev Syst Biol Med. https://doi.org/10.1002/wsbm.1397

    Article  PubMed  Google Scholar 

  35. Mo Y, Wang Y, Zhang L, Yang L, Zhou M, Li X, Li Y, Li G, Zeng Z, Xiong W, Xiong F, Guo C (2019) The role of Wnt signaling pathway in tumor metabolic reprogramming. J Cancer 10(16):3789–3797. https://doi.org/10.7150/jca.31166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Renner K, Singer K, Koehl GE, Geissler EK, Peter K, Siska PJ, Kreutz M (2017) Metabolic Hallmarks of Tumor and Immune Cells in the Tumor Microenvironment. Front Immunol 8:248. https://doi.org/10.3389/fimmu.2017.00248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9(4):539–549. https://doi.org/10.1038/bjc.1955.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Munoz-Pinedo C, El Mjiyad N, Ricci JE (2012) Cancer metabolism: current perspectives and future directions. Cell Death Dis 3:e248. https://doi.org/10.1038/cddis.2011.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun RC, Denko NC (2014) Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 19(2):285–292. https://doi.org/10.1016/j.cmet.2013.11.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liang CT, Guo WH, Tan L, He YB, Xiong F, Zhang SS, Zeng ZY, Xiong W, Li GY, Guo C (2019) Hypoxia-inducible Factor-1: a Key Protein for Cells Adapting to Changes in Oxygen Supply. Prog Biochem Biophys 46(11):1041–1049. https://doi.org/10.16476/j.pibb.2019.0250

    Article  Google Scholar 

  41. Qiu GZ, Jin MZ, Dai JX, Sun W, Feng JH, Jin WL (2017) Reprogramming of the Tumor in the Hypoxic Niche: The Emerging Concept and Associated Therapeutic Strategies. Trends Pharmacol Sci 38(8):669–686. https://doi.org/10.1016/j.tips.2017.05.002

    Article  CAS  PubMed  Google Scholar 

  42. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, Gimotty PA, Gilks CB, Lal P, Zhang L, Coukos G (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475(7355):226–230. https://doi.org/10.1038/nature10169

    Article  CAS  PubMed  Google Scholar 

  43. Tang T, Yang L, Cao Y, Wang M, Zhang S, Gong Z, Xiong F, He Y, Zhou Y, Liao Q, Xiang B, Zhou M, Guo C, Li X, Li Y, Xiong W, Li G, Zeng Z (2020) LncRNA AATBC regulates Pinin to promote metastasis in nasopharyngeal carcinoma. Mol Oncol. https://doi.org/10.1002/1878-0261.12703

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang D, Zeng Z, Zhang S, Xiong F, He B, Wu Y, Li W, Tang L, Wei F, Xiang B, Li Z, Zhou Y, Zhou M, Li X, Li Y, Li G, Xiong W, Guo C (2020) Epstein-Barr virus-encoded miR-BART6-3p inhibits cancer cell proliferation through the LOC553103-STMN1 axis. FASEB J. https://doi.org/10.1096/fj.202000039RR

    Article  PubMed  Google Scholar 

  45. Wang D, Tang L, Wu Y, Fan C, Zhang S, Xiang B, Zhou M, Li X, Li Y, Li G, Xiong W, Zeng Z, Guo C (2020) Abnormal X chromosome inactivation and tumor development. CMLS, Cellular and molecular life sciences

  46. Wigerup C, Pahlman S, Bexell D (2016) Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther 164:152–169. https://doi.org/10.1016/j.pharmthera.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  47. Meijer TW, Kaanders JH, Span PN, Bussink J (2012) Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Cancer Res 18(20):5585–5594. https://doi.org/10.1158/1078-0432.CCR-12-0858

    Article  CAS  PubMed  Google Scholar 

  48. Huang L, Garrett Injac S, Cui K, Braun F, Lin Q, Du Y, Zhang H, Kogiso M, Lindsay H, Zhao S, Baxter P, Adekunle A, Man TK, Zhao H, Li XN, Lau CC, Wong STC (2018) Systems biology-based drug repositioning identifies digoxin as a potential therapy for groups 3 and 4 medulloblastoma. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aat0150

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R, Krol I, Scheidmann MC, Beisel C, Stirnimann CU, Kurzeder C, Heinzelmann-Schwarz V, Rochlitz C, Weber WP, Aceto N (2019) Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding. Cell 176(98–112):e114. https://doi.org/10.1016/j.cell.2018.11.046

    Article  CAS  Google Scholar 

  50. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732. https://doi.org/10.1038/nrc1187

    Article  CAS  PubMed  Google Scholar 

  51. Chen W, Hill H, Christie A, Kim MS, Holloman E, Pavia-Jimenez A, Homayoun F, Ma Y, Patel N, Yell P, Hao G, Yousuf Q, Joyce A, Pedrosa I, Geiger H, Zhang H, Chang J, Gardner KH, Bruick RK, Reeves C, Hwang TH, Courtney K, Frenkel E, Sun X, Zojwalla N, Wong T, Rizzi JP, Wallace EM, Josey JA, Xie Y, Xie XJ, Kapur P, McKay RM, Brugarolas J (2016) Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539(7627):112–117. https://doi.org/10.1038/nature19796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Harada H (2016) Hypoxia-inducible factor 1-mediated characteristic features of cancer cells for tumor radioresistance. J Radiat Res 57(Suppl 1):i99–i105. https://doi.org/10.1093/jrr/rrw012

    Article  PubMed  PubMed Central  Google Scholar 

  53. Harada H, Kizaka-Kondoh S, Li G, Itasaka S, Shibuya K, Inoue M, Hiraoka M (2007) Significance of HIF-1-active cells in angiogenesis and radioresistance. Oncogene 26(54):7508–7516. https://doi.org/10.1038/sj.onc.1210556

    Article  CAS  PubMed  Google Scholar 

  54. McNamee EN, Korns Johnson D, Homann D, Clambey ET (2013) Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunol Res 55(1–3):58–70. https://doi.org/10.1007/s12026-012-8349-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Westendorf AM, Skibbe K, Adamczyk A, Buer J, Geffers R, Hansen W, Pastille E, Jendrossek V (2017) Hypoxia Enhances Immunosuppression by Inhibiting CD4+ Effector T Cell Function and Promoting Treg Activity. Cell Physiol Biochem 41(4):1271–1284. https://doi.org/10.1159/000464429

    Article  CAS  PubMed  Google Scholar 

  56. Ge J, Wang J, Wang H, Jiang X, Liao Q, Gong Q, Mo Y, Li X, Li G, Xiong W, Zhao J, Zeng Z (2020) The BRAF V600E mutation is a predictor of the effect of radioiodine therapy in papillary thyroid cancer. J Cancer 11(4):932–939. https://doi.org/10.7150/jca.33105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu Q, Zhou W, Yin S, Zhou Y, Chen T, Qian J, Su R, Hong L, Lu H, Zhang F, Xie H, Zhou L, Zheng S (2019) Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver cancer. Hepatology 70(1):198–214. https://doi.org/10.1002/hep.30593

    Article  CAS  PubMed  Google Scholar 

  58. Lequeux A, Noman MZ, Xiao M, Sauvage D, Van Moer K, Viry E, Bocci I, Hasmim M, Bosseler M, Berchem G, Janji B (2019) Impact of hypoxic tumor microenvironment and tumor cell plasticity on the expression of immune checkpoints. Cancer Lett 458:13–20. https://doi.org/10.1016/j.canlet.2019.05.021

    Article  CAS  PubMed  Google Scholar 

  59. Chouaib S, Noman MZ, Kosmatopoulos K, Curran MA (2017) Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer. Oncogene 36(4):439–445. https://doi.org/10.1038/onc.2016.225

    Article  CAS  PubMed  Google Scholar 

  60. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V, Chouaib S (2014) PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211(5):781–790. https://doi.org/10.1084/jem.20131916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, Singh B, Rosenblum MD, Fuchs E (2019) Adaptive immune resistance emerges from tumor-initiating stem cells. Cell 177(5):1172–1186. https://doi.org/10.1016/j.cell.2019.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, He X, Semenza GL (2016) Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA. Proc Natl Acad Sci U S A 113(14):E2047–2056. https://doi.org/10.1073/pnas.1602883113

    Article  PubMed  PubMed Central  Google Scholar 

  63. Thienpont B, Steinbacher J, Zhao H, D'Anna F, Kuchnio A, Ploumakis A, Ghesquiere B, Van Dyck L, Boeckx B, Schoonjans L, Hermans E, Amant F, Kristensen VN, Peng Koh K, Mazzone M, Coleman M, Carell T, Carmeliet P, Lambrechts D (2016) Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537(7618):63–68. https://doi.org/10.1038/nature19081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bhandari V, Hoey C, Liu LY, Lalonde E, Ray J, Livingstone J, Lesurf R, Shiah YJ, Vujcic T, Huang X, Espiritu SMG, Heisler LE, Yousif F, Huang V, Yamaguchi TN, Yao CQ, Sabelnykova VY, Fraser M, Chua MLK, van der Kwast T, Liu SK, Boutros PC, Bristow RG (2019) Molecular landmarks of tumor hypoxia across cancer types. Nat Genet 51(2):308–318. https://doi.org/10.1038/s41588-018-0318-2

    Article  CAS  PubMed  Google Scholar 

  65. Greiner EF, Guppy M, Brand K (1994) Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem 269(50):31484–31490

    Article  CAS  PubMed  Google Scholar 

  66. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033. https://doi.org/10.1126/science.1160809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899. https://doi.org/10.1038/nrc1478

    Article  CAS  PubMed  Google Scholar 

  68. Tasselli L, Chua KF (2012) Cancer: Metabolism in 'the driver's seat. Nature 492(7429):362–363. https://doi.org/10.1038/492362a

    Article  CAS  PubMed  Google Scholar 

  69. Fan C, Tu C, Qi P, Guo C, Xiang B, Zhou M, Li X, Wu X, Li X, Li G, Xiong W, Zeng Z (2019) GPC6 promotes cell proliferation, migration, and invasion in nasopharyngeal carcinoma. J Cancer 10(17):3926–3932. https://doi.org/10.7150/jca.31345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xiao L, Wei F, Liang F, Li Q, Deng H, Tan S, Chen S, Xiong F, Guo C, Liao Q, Li X, Zhang W, Wu M, Zhou Y, Xiang B, Zhou M, Li X, Xiong W, Zeng Z, Li G (2019) TSC22D2 identified as a candidate susceptibility gene of multi-cancer pedigree using genome-wide linkage analysis and whole-exome sequencing. Carcinogenesis 40(7):819–827. https://doi.org/10.1093/carcin/bgz095

    Article  CAS  PubMed  Google Scholar 

  71. Cascone T, McKenzie JA, Mbofung RM, Punt S, Wang Z, Xu C, Williams LJ, Wang Z, Bristow CA, Carugo A, Peoples MD, Li L, Karpinets T, Huang L, Malu S, Creasy C, Leahey SE, Chen J, Chen Y, Pelicano H, Bernatchez C, Gopal YNV, Heffernan TP, Hu J, Wang J, Amaria RN, Garraway LA, Huang P, Yang P, Wistuba II, Woodman SE, Roszik J, Davis RE, Davies MA, Heymach JV, Hwu P, Peng W (2018) Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab 27(5):977–987. https://doi.org/10.1016/j.cmet.2018.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K, Timischl B, Mackensen A, Kunz-Schughart L, Andreesen R, Krause SW, Kreutz M (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109(9):3812–3819. https://doi.org/10.1182/blood-2006-07-035972

    Article  CAS  PubMed  Google Scholar 

  73. Dietl K, Renner K, Dettmer K, Timischl B, Eberhart K, Dorn C, Hellerbrand C, Kastenberger M, Kunz-Schughart LA, Oefner PJ, Andreesen R, Gottfried E, Kreutz MP (2010) Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol 184(3):1200–1209. https://doi.org/10.4049/jimmunol.0902584

    Article  CAS  PubMed  Google Scholar 

  74. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337. https://doi.org/10.1038/nrc3038

    Article  CAS  PubMed  Google Scholar 

  75. Qian X, Li X, Shi Z, Xia Y, Cai Q, Xu D, Tan L, Du L, Zheng Y, Zhao D, Zhang C, Lorenzi PL, You Y, Jiang BH, Jiang T, Li H, Lu Z (2019) PTEN Suppresses Glycolysis by Dephosphorylating and Inhibiting Autophosphorylated PGK1. Mol Cell 76(3):516–527. https://doi.org/10.1016/j.molcel.2019.08.006

    Article  CAS  PubMed  Google Scholar 

  76. Cheung EC, Vousden KH (2010) The role of p53 in glucose metabolism. Curr Opin Cell Biol 22(2):186–191. https://doi.org/10.1016/j.ceb.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  77. Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA, Dang CV (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275(29):21797–21800. https://doi.org/10.1074/jbc.C000023200

    Article  CAS  PubMed  Google Scholar 

  78. Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330(6009):1340–1344. https://doi.org/10.1126/science.1193494

    Article  CAS  PubMed  Google Scholar 

  79. Ancey PB, Contat C, Meylan E (2018) Glucose transporters in cancer - from tumor cells to the tumor microenvironment. FEBS J 285(16):2926–2943. https://doi.org/10.1111/febs.14577

    Article  CAS  PubMed  Google Scholar 

  80. Ganapathy-Kanniappan S, Geschwind JF (2013) Tumor glycolysis as a target for cancer therapy: progress and prospects. Molecular Cancer 12:152. https://doi.org/10.1186/1476-4598-12-152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, Gong Z, Guo C, Li X, Deng H, Cao K, Zhou M, Xiang B, Li X, Li Y, Li G, Xiong W, Zeng Z (2018) Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res 37(1):87. https://doi.org/10.1186/s13046-018-0758-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25(34):4633–4646. https://doi.org/10.1038/sj.onc.1209597

    Article  CAS  PubMed  Google Scholar 

  83. Oronsky BT, Oronsky N, Fanger GR, Parker CW, Caroen SZ, Lybeck M, Scicinski JJ (2014) Follow the ATP: tumor energy production: a perspective. Anticancer Agents Med Chem 14(9):1187–1198. https://doi.org/10.2174/1871520614666140804224637

    Article  CAS  PubMed  Google Scholar 

  84. Zhang J, Pavlova NN, Thompson CB (2017) Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J 36(10):1302–1315. https://doi.org/10.15252/embj.201696151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. DeBerardinis RJ, Cheng T (2010) Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29(3):313–324. https://doi.org/10.1038/onc.2009.358

    Article  CAS  PubMed  Google Scholar 

  86. Hensley CT, Wasti AT, DeBerardinis RJ (2013) Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 123(9):3678–3684. https://doi.org/10.1172/JCI69600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yue M, Jiang J, Gao P, Liu H, Qing G (2017) Oncogenic MYC Activates a feedforward regulatory loop promoting essential amino acid metabolism and tumorigenesis. Cell Rep 21(13):3819–3832. https://doi.org/10.1016/j.celrep.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  88. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, Kang Y, Fleming JB, Bardeesy N, Asara JM, Haigis MC, DePinho RA, Cantley LC, Kimmelman AC (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496(7443):101–105. https://doi.org/10.1038/nature12040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jin K, Wang S, Zhang Y, Xia M, Mo Y, Li X, Li G, Zeng Z, Xiong W, He Y (2019) Long non-coding RNA PVT1 interacts with MYC and its downstream molecules to synergistically promote tumorigenesis. Cellular Molecular Life Sci 76(21):4275–4289. https://doi.org/10.1007/s00018-019-03222-1

    Article  CAS  Google Scholar 

  90. Wang W, Zhou R, Wu Y, Liu Y, Su W, Xiong W, Zeng Z (2019) PVT1 Promotes Cancer Progression via MicroRNAs. Front Oncol 9:609. https://doi.org/10.3389/fonc.2019.00609

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tajan M, Hock AK, Blagih J, Robertson NA, Labuschagne CF, Kruiswijk F, Humpton TJ, Adams PD, Vousden KH (2018) A Role for p53 in the adaptation to glutamine starvation through the expression of SLC1A3. Cell Metab 28(5):721–736. https://doi.org/10.1016/j.cmet.2018.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jeon YJ, Khelifa S, Ratnikov B, Scott DA, Feng Y, Parisi F, Ruller C, Lau E, Kim H, Brill LM, Jiang T, Rimm DL, Cardiff RD, Mills GB, Smith JW, Osterman AL, Kluger Y, Ronai ZA (2015) Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell 27(3):354–369. https://doi.org/10.1016/j.ccell.2015.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fu S, Li Z, Xiao L, Hu W, Zhang L, Xie B, Zhou Q, He J, Qiu Y, Wen M, Peng Y, Gao J, Tan R, Deng Y, Weng L, Sun LQ (2019) Glutamine synthetase promotes radiation resistance via facilitating nucleotide metabolism and subsequent DNA damage repair. Cell Rep 28(5):1136–1143. https://doi.org/10.1016/j.celrep.2019.07.002

    Article  CAS  PubMed  Google Scholar 

  94. Altman BJ, Stine ZE, Dang CV (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16(10):619–634. https://doi.org/10.1038/nrc.2016.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dias MM, Adamoski D, Dos Reis LM, Ascencao CFR, de Oliveira KRS, Mafra ACP, da Silva Bastos AC, Quintero M, de GCC, Ferreira IM, Fidelis CHV, Rocco SA, Bajgelman MC, Stine Z, Berindan-Neagoe I, Calin GA, Ambrosio ALB, Dias SMG, (2019) GLS2 is protumorigenic in breast cancers. Oncogene. https://doi.org/10.1038/s41388-019-1007-z

  96. Mohamed A, Deng X, Khuri FR, Owonikoko TK (2014) Altered glutamine metabolism and therapeutic opportunities for lung cancer. Clin Lung Cancer 15(1):7–15. https://doi.org/10.1016/j.cllc.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  97. Biancur DE, Paulo JA, Malachowska B, Quiles Del Rey M, Sousa CM, Wang X, Sohn ASW, Chu GC, Gygi SP, Harper JW, Fendler W, Mancias JD, Kimmelman AC (2017) Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat Commun 8:15965. https://doi.org/10.1038/ncomms15965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mullard A (2016) Cancer metabolism pipeline breaks new ground. Nat Rev Drug Discov 15(11):735–737. https://doi.org/10.1038/nrd.2016.223

    Article  CAS  PubMed  Google Scholar 

  99. Song M, Kim SH, Im CY, Hwang HJ (2018) Recent development of small molecule glutaminase inhibitors. Curr Top Med Chem 18(6):432–443. https://doi.org/10.2174/1568026618666180525100830

    Article  CAS  PubMed  Google Scholar 

  100. Leone RD, Zhao L, Englert JM, Sun IM, Oh MH, Sun IH, Arwood ML, Bettencourt IA, Patel CH, Wen J, Tam A, Blosser RL, Prchalova E, Alt J, Rais R, Slusher BS, Powell JD (2019) Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366(6468):1013–1021. https://doi.org/10.1126/science.aav2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. DeBerardinis RJ (2020) Tumor microenvironment, metabolism, and immunotherapy. N Engl J Med 382(9):869–871. https://doi.org/10.1056/NEJMcibr1914890

    Article  PubMed  Google Scholar 

  102. Pavlova NN, Hui S, Ghergurovich JM, Fan J, Intlekofer AM, White RM, Rabinowitz JD, Thompson CB, Zhang J (2018) As extracellular glutamine levels decline, asparagine becomes an essential amino acid. Cell Metab 27(2):428–438. https://doi.org/10.1016/j.cmet.2017.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kus K, Kij A, Zakrzewska A, Jasztal A, Stojak M, Walczak M, Chlopicki S (2018) Alterations in arginine and energy metabolism, structural and signalling lipids in metastatic breast cancer in mice detected in plasma by targeted metabolomics and lipidomics. Breast Cancer Res 20(1):148. https://doi.org/10.1186/s13058-018-1075-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Venkateswaran N, Lafita-Navarro MC, Hao YH, Kilgore JA, Perez-Castro L, Braverman J, Borenstein-Auerbach N, Kim M, Lesner NP, Mishra P, Brabletz T, Shay JW, DeBerardinis RJ, Williams NS, Yilmaz OH, Conacci-Sorrell M (2019) MYC promotes tryptophan uptake and metabolism by the kynurenine pathway in colon cancer. Genes Dev 33(17–18):1236–1251. https://doi.org/10.1101/gad.327056.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, Wu Y, Li X, Li X, Li G, Zeng Z, Xiong W (2018) Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Molecular Cancer 17(1):45. https://doi.org/10.1186/s12943-018-0796-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang H, Wang Y, Li J, Chen H, He X, Zhang H, Liang H, Lu J (2018) Biosynthetic energy cost for amino acids decreases in cancer evolution. Nat Commun 9(1):4124. https://doi.org/10.1038/s41467-018-06461-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr (2013) Cellular fatty acid metabolism and cancer. Cell Metab 18(2):153–161. https://doi.org/10.1016/j.cmet.2013.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hopperton KE, Duncan RE, Bazinet RP, Archer MC (2014) Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity. Exp Cell Res 320(2):302–310. https://doi.org/10.1016/j.yexcr.2013.10.016

    Article  CAS  PubMed  Google Scholar 

  109. Mo Y, Wang Y, Xiong F, Ge X, Li Z, Li X, Li Y, Li X, Xiong W, Li G, Zeng Z, Guo C (2019) Proteomic analysis of the molecular mechanism of lovastatin inhibiting the growth of nasopharyngeal carcinoma cells. J Cancer 10(10):2342–2349. https://doi.org/10.7150/jca.30454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, Goodwin LM, Smethurst E, Mason S, Blyth K, McGarry L, James D, Shanks E, Kalna G, Saunders RE, Jiang M, Howell M, Lassailly F, Thin MZ, Spencer-Dene B, Stamp G, van den Broek NJ, Mackay G, Bulusu V, Kamphorst JJ, Tardito S, Strachan D, Harris AL, Aboagye EO, Critchlow SE, Wakelam MJ, Schulze A, Gottlieb E (2015) Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27(1):57–71. https://doi.org/10.1016/j.ccell.2014.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yi M, Li J, Chen S, Cai J, Ban Y, Peng Q, Zhou Y, Zeng Z, Peng S, Li X, Xiong W, Li G, Xiang B (2018) Emerging role of lipid metabolism alterations in Cancer stem cells. J Exp Clin Cancer Res 37(1):118. https://doi.org/10.1186/s13046-018-0784-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7(10):763–777. https://doi.org/10.1038/nrc2222

    Article  CAS  PubMed  Google Scholar 

  113. Rohrig F, Schulze A (2016) The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer 16(11):732–749. https://doi.org/10.1038/nrc.2016.89

    Article  CAS  PubMed  Google Scholar 

  114. Svensson RU, Parker SJ, Eichner LJ, Kolar MJ, Wallace M, Brun SN, Lombardo PS, Van Nostrand JL, Hutchins A, Vera L, Gerken L, Greenwood J, Bhat S, Harriman G, Westlin WF, Harwood HJ Jr, Saghatelian A, Kapeller R, Metallo CM, Shaw RJ (2016) Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med 22(10):1108–1119. https://doi.org/10.1038/nm.4181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vriens K, Christen S, Parik S, Broekaert D, Yoshinaga K, Talebi A, Dehairs J, Escalona-Noguero C, Schmieder R, Cornfield T, Charlton C, Romero-Perez L, Rossi M, Rinaldi G, Orth MF, Boon R, Kerstens A, Kwan SY, Faubert B, Mendez-Lucas A, Kopitz CC, Chen T, Fernandez-Garcia J, Duarte JAG, Schmitz AA, Steigemann P, Najimi M, Hagebarth A, Van Ginderachter JA, Sokal E, Gotoh N, Wong KK, Verfaillie C, Derua R, Munck S, Yuneva M, Beretta L, DeBerardinis RJ, Swinnen JV, Hodson L, Cassiman D, Verslype C, Christian S, Grunewald S, Grunewald TGP, Fendt SM (2019) Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature 566(7744):403–406. https://doi.org/10.1038/s41586-019-0904-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang YA, Li XL, Mo YZ, Fan CM, Tang L, Xiong F, Guo C, Xiang B, Zhou M, Ma J, Huang X, Wu X, Li Y, Li GY, Zeng ZY, Xiong W (2018) Effects of tumor metabolic microenvironment on regulatory T cells. Molecular Cancer 17(1):168. https://doi.org/10.1186/s12943-018-0913-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wherry EJ (2011) T cell exhaustion. Nat Immunol 12(6):492–499. https://doi.org/10.1038/ni.2035

    Article  CAS  PubMed  Google Scholar 

  118. Pearce EL, Poffenberger MC, Chang CH, Jones RG (2013) Fueling immunity: insights into metabolism and lymphocyte function. Science 342(6155):1242454. https://doi.org/10.1126/science.1242454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Palmer CS, Ostrowski M, Balderson B, Christian N, Crowe SM (2015) Glucose metabolism regulates T cell activation, differentiation, and functions. Front Immunol 6:1. https://doi.org/10.3389/fimmu.2015.00001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Siska PJ, Rathmell JC (2015) T cell metabolic fitness in antitumor immunity. Trends Immunol 36(4):257–264. https://doi.org/10.1016/j.it.2015.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pearce EL (2010) Metabolism in T cell activation and differentiation. Curr Opin Immunol 22(3):314–320. https://doi.org/10.1016/j.coi.2010.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hu Z, Qu G, Yu X, Jiang H, Teng X, Ding L, Hu Q, Guo X, Zhou Y, Wang F, Li H, Chen L, Jiang J, Su B, Liu J, Zou Q (2019) Acylglycerol kinase maintains metabolic state and immune responses of CD8+ T cells. Cell Metab 30(2):290–302. https://doi.org/10.1016/j.cmet.2019.05.016

    Article  CAS  PubMed  Google Scholar 

  123. Le Bourgeois T, Strauss L, Aksoylar HI, Daneshmandi S, Seth P, Patsoukis N, Boussiotis VA (2018) Targeting T cell metabolism for improvement of cancer immunotherapy. Front Oncol 8:237. https://doi.org/10.3389/fonc.2018.00237

    Article  PubMed  PubMed Central  Google Scholar 

  124. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, Worley PF, Kozma SC, Powell JD (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30(6):832–844. https://doi.org/10.1016/j.immuni.2009.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, Larsen CP, Ahmed R (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460(7251):108–112. https://doi.org/10.1038/nature08155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Palmer CS, Hussain T, Duette G, Weller TJ, Ostrowski M, Sada-Ovalle I, Crowe SM (2016) Regulators of glucose metabolism in CD4(+) and CD8(+) T cells. Int Rev Immunol 35(6):477–488. https://doi.org/10.3109/08830185.2015.1082178

    Article  CAS  PubMed  Google Scholar 

  127. Jones N, Cronin JG, Dolton G, Panetti S, Schauenburg AJ, Galloway SAE, Sewell AK, Cole DK, Thornton CA, Francis NJ (2017) Metabolic adaptation of human CD4(+) and CD8(+) T-cells to T-cell receptor-mediated stimulation. Front Immunol 8:1516. https://doi.org/10.3389/fimmu.2017.01516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, Anderson SM, Abel ED, Chen BJ, Hale LP, Rathmell JC (2014) The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab 20(1):61–72. https://doi.org/10.1016/j.cmet.2014.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cao Y, Rathmell JC, Macintyre AN (2014) Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells. PLoS ONE 9(8):e104104. https://doi.org/10.1371/journal.pone.0104104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Johnson MO, Wolf MM, Madden MZ, Andrejeva G, Sugiura A, Contreras DC, Maseda D, Liberti MV, Paz K, Kishton RJ, Johnson ME, de Cubas AA, Wu P, Li G, Zhang Y, Newcomb DC, Wells AD, Restifo NP, Rathmell WK, Locasale JW, Davila ML, Blazar BR, Rathmell JC (2018) Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175(7):1780–1795. https://doi.org/10.1016/j.cell.2018.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Xiao Z, Dai Z, Locasale JW (2019) Metabolic landscape of the tumor microenvironment at single cell resolution. Nat Commun 10(1):3763. https://doi.org/10.1038/s41467-019-11738-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233(9):6425–6440. https://doi.org/10.1002/jcp.26429

    Article  CAS  PubMed  Google Scholar 

  133. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896. https://doi.org/10.1038/ni.1937

    Article  CAS  PubMed  Google Scholar 

  134. Komohara Y, Fujiwara Y, Ohnishi K, Takeya M (2016) Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev 99(Pt B):180–185. https://doi.org/10.1016/j.addr.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  135. Mills CD (2012) M1 and M2 Macrophages: Oracles of Health and Disease. Crit Rev Immunol 32(6):463–488

    Article  CAS  PubMed  Google Scholar 

  136. Rath M, Muller I, Kropf P, Closs EI, Munder M (2014) Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol 5:532. https://doi.org/10.3389/fimmu.2014.00532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38(4):633–643. https://doi.org/10.1016/j.immuni.2013.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mills EL, O'Neill LA (2016) Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur J Immunol 46(1):13–21. https://doi.org/10.1002/eji.201445427

    Article  CAS  PubMed  Google Scholar 

  139. Liu D, Chang C, Lu N, Wang X, Lu Q, Ren X, Ren P, Zhao D, Wang L, Zhu Y, He F, Tang L (2017) Comprehensive proteomics analysis reveals metabolic reprogramming of tumor-associated macrophages stimulated by the tumor microenvironment. J Proteome Res 16(1):288–297. https://doi.org/10.1021/acs.jproteome.6b00604

    Article  CAS  PubMed  Google Scholar 

  140. Netea-Maier RT, Smit JWA, Netea MG (2018) Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship. Cancer Lett 413:102–109. https://doi.org/10.1016/j.canlet.2017.10.037

    Article  CAS  PubMed  Google Scholar 

  141. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116(11):3015–3025. https://doi.org/10.1172/JCI28898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhang L, Sun S, Wang Y, Mo Y, Xiong F, Zhang S, Zeng Z, Xiong W, Li G, Chen H, Guo C (2020) Gossypol induces apoptosis of multiple myeloma cells through the JUN-JNK pathway. Am J Cancer Res 10(3):870–883

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Xiang W, Shi R, Kang X, Zhang X, Chen P, Zhang L, Hou A, Wang R, Zhao Y, Zhao K, Liu Y, Ma Y, Luo H, Shang S, Zhang J, He F, Yu S, Gan L, Shi C, Li Y, Yang W, Liang H, Miao H (2018) Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression. Nat Commun 9(1):2574. https://doi.org/10.1038/s41467-018-04999-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Binenbaum Y, Fridman E, Yaari Z, Milman N, Schroeder A, Ben David G, Shlomi T, Gil Z (2018) Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res 78(18):5287–5299. https://doi.org/10.1158/0008-5472.CAN-18-0124

    Article  CAS  PubMed  Google Scholar 

  145. Halbrook CJ, Pontious C, Kovalenko I, Lapienyte L, Dreyer S, Lee HJ, Thurston G, Zhang Y, Lazarus J, Sajjakulnukit P, Hong HS, Kremer DM, Nelson BS, Kemp S, Zhang L, Chang D, Biankin A, Shi J, Frankel TL, Crawford HC, Morton JP, Pasca di Magliano M, Lyssiotis CA (2019) Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metab 29(6):1390–1399. https://doi.org/10.1016/j.cmet.2019.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Di Pilato M, Kim EY, Cadilha BL, Prussmann JN, Nasrallah MN, Seruggia D, Usmani SM, Misale S, Zappulli V, Carrizosa E, Mani V, Ligorio M, Warner RD, Medoff BD, Marangoni F, Villani AC, Mempel TR (2019) Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature 570(7759):112–116. https://doi.org/10.1038/s41586-019-1215-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H (2013) mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499(7459):485–490. https://doi.org/10.1038/nature12297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kishore M, Cheung KCP, Fu H, Bonacina F, Wang G, Coe D, Ward EJ, Colamatteo A, Jangani M, Baragetti A, Matarese G, Smith DM, Haas R, Mauro C, Wraith DC, Okkenhaug K, Catapano AL, De Rosa V, Norata GD, Marelli-Berg FM (2017) Regulatory T cell migration is dependent on glucokinase-mediated glycolysis. Immunity 47(5):875–889. https://doi.org/10.1016/j.immuni.2017.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Maj T, Wang W, Crespo J, Zhang H, Wang W, Wei S, Zhao L, Vatan L, Shao I, Szeliga W, Lyssiotis C, Liu JR, Kryczek I, Zou W (2017) Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol 18(12):1332–1341. https://doi.org/10.1038/ni.3868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949. https://doi.org/10.1038/nm1093

    Article  CAS  PubMed  Google Scholar 

  151. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6(4):295–307. https://doi.org/10.1038/nri1806

    Article  CAS  PubMed  Google Scholar 

  152. Tanaka A, Sakaguchi S (2017) Regulatory T cells in cancer immunotherapy. Cell Res 27(1):109–118. https://doi.org/10.1038/cr.2016.151

    Article  CAS  PubMed  Google Scholar 

  153. Parker KH, Beury DW, Ostrand-Rosenberg S (2015) Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment. Adv Cancer Res 128:95–139. https://doi.org/10.1016/bs.acr.2015.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. https://doi.org/10.1038/nri2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ostrand-Rosenberg S (2018) Myeloid derived-suppressor cells: their role in cancer and obesity. Curr Opin Immunol 51:68–75. https://doi.org/10.1016/j.coi.2018.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hossain F, Al-Khami AA, Wyczechowska D, Hernandez C, Zheng L, Reiss K, Valle LD, Trillo-Tinoco J, Maj T, Zou W, Rodriguez PC, Ochoa AC (2015) Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res 3(11):1236–1247. https://doi.org/10.1158/2326-6066.CIR-15-0036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Al-Khami AA, Zheng L, Del Valle L, Hossain F, Wyczechowska D, Zabaleta J, Sanchez MD, Dean MJ, Rodriguez PC, Ochoa AC (2017) Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells. Oncoimmunology 6(10):e1344804. https://doi.org/10.1080/2162402X.2017.1344804

    Article  PubMed  PubMed Central  Google Scholar 

  158. Yan D, Adeshakin AO, Xu M, Afolabi LO, Zhang G, Chen YH, Wan X (2019) Lipid metabolic pathways confer the immunosuppressive function of myeloid-derived suppressor cells in Tumor. Front Immunol 10:1399. https://doi.org/10.3389/fimmu.2019.01399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37(3):208–220. https://doi.org/10.1016/j.it.2016.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Veglia F, Tyurin VA, Blasi M, De Leo A, Kossenkov AV, Donthireddy L, To TKJ, Schug Z, Basu S, Wang F, Ricciotti E, DiRusso C, Murphy ME, Vonderheide RH, Lieberman PM, Mulligan C, Nam B, Hockstein N, Masters G, Guarino M, Lin C, Nefedova Y, Black P, Kagan VE, Gabrilovich DI (2019) Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 569(7754):73–78. https://doi.org/10.1038/s41586-019-1118-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Du X, Wen J, Wang Y, Karmaus PWF, Khatamian A, Tan H, Li Y, Guy C, Nguyen TM, Dhungana Y, Neale G, Peng J, Yu J, Chi H (2018) Hippo/Mst signalling couples metabolic state and immune function of CD8alpha(+) dendritic cells. Nature 558(7708):141–145. https://doi.org/10.1038/s41586-018-0177-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wculek SK, Khouili SC, Priego E, Heras-Murillo I, Sancho D (2019) Metabolic control of dendritic cell functions: digesting information. Front Immunol 10:775. https://doi.org/10.3389/fimmu.2019.00775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Merad M, Salmon H (2015) Cancer: A dendritic-cell brake on antitumour immunity. Nature 523(7560):294–295. https://doi.org/10.1038/523294a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, Chopra S, Perales-Puchalt A, Song M, Zhang S, Bettigole SE, Gupta D, Holcomb K, Ellenson LH, Caputo T, Lee AH, Conejo-Garcia JR, Glimcher LH (2015) ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161(7):1527–1538. https://doi.org/10.1016/j.cell.2015.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Giovanelli P, Sandoval TA, Cubillos-Ruiz JR (2019) Dendritic cell metabolism and function in tumors. Trends Immunol 40(8):699–718. https://doi.org/10.1016/j.it.2019.06.004

    Article  CAS  PubMed  Google Scholar 

  166. Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542(7640):177–185. https://doi.org/10.1038/nature21363

    Article  CAS  PubMed  Google Scholar 

  167. Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, Tonc E, Schreiber RD, Pearce EJ, Pearce EL (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162(6):1229–1241. https://doi.org/10.1016/j.cell.2015.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O'Sullivan D, Huang SC, van der Windt GJ, Blagih J, Qiu J, Weber JD, Pearce EJ, Jones RG, Pearce EL (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153(6):1239–1251. https://doi.org/10.1016/j.cell.2013.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, Wei S, Crespo J, Wan S, Vatan L, Szeliga W, Shao I, Wang Y, Liu Y, Varambally S, Chinnaiyan AM, Welling TH, Marquez V, Kotarski J, Wang H, Wang Z, Zhang Y, Liu R, Wang G, Zou W (2016) Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol 17(1):95–103. https://doi.org/10.1038/ni.3313

    Article  CAS  PubMed  Google Scholar 

  170. Bo H, Fan L, Gong Z, Liu Z, Shi L, Guo C, Li X, Liao Q, Zhang W, Zhou M, Xiang B, Li X, Li G, Xiong W, Zeng Z, Cao K, Zhang S, Xiong F (2019) Upregulation and hypomethylation of lncRNA AFAP1AS1 predicts a poor prognosis and promotes the migration and invasion of cervical cancer. Oncol Rep 41(4):2431–2439. https://doi.org/10.3892/or.2019.7027

    Article  CAS  PubMed  Google Scholar 

  171. Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, Tsui YC, Cui G, Micevic G, Perales JC, Kleinstein SH, Abel ED, Insogna KL, Feske S, Locasale JW, Bosenberg MW, Rathmell JC, Kaech SM (2015) Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor t cell responses. Cell 162(6):1217–1228. https://doi.org/10.1016/j.cell.2015.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhang Y, Kurupati R, Liu L, Zhou XY, Zhang G, Hudaihed A, Filisio F, Giles-Davis W, Xu X, Karakousis GC, Schuchter LM, Xu W, Amaravadi R, Xiao M, Sadek N, Krepler C, Herlyn M, Freeman GJ, Rabinowitz JD, Ertl HCJ (2017) Enhancing CD8(+) T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32(3):377–391. https://doi.org/10.1016/j.ccell.2017.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Huang W, Choi W, Chen Y, Zhang Q, Deng H, He W, Shi Y (2013) A proposed role for glutamine in cancer cell growth through acid resistance. Cell Res 23(5):724–727. https://doi.org/10.1038/cr.2013.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Patil MD, Bhaumik J, Babykutty S, Banerjee UC, Fukumura D (2016) Arginine dependence of tumor cells: targeting a chink in cancer's armor. Oncogene 35(38):4957–4972. https://doi.org/10.1038/onc.2016.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Raber P, Ochoa AC, Rodriguez PC (2012) Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunol Invest 41(6–7):614–634. https://doi.org/10.3109/08820139.2012.680634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rodriguez PC, Ochoa AC (2008) Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222:180–191. https://doi.org/10.1111/j.1600-065X.2008.00608.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Fletcher M, Ramirez ME, Sierra RA, Raber P, Thevenot P, Al-Khami AA, Sanchez-Pino D, Hernandez C, Wyczechowska DD, Ochoa AC, Rodriguez PC (2015) l-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells. Cancer Res 75(2):275–283. https://doi.org/10.1158/0008-5472.CAN-14-1491

    Article  CAS  PubMed  Google Scholar 

  178. Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK, Mueller-Klieser W (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60(4):916–921

    CAS  PubMed  Google Scholar 

  179. Haas R, Smith J, Rocher-Ros V, Nadkarni S, Montero-Melendez T, D'Acquisto F, Bland EJ, Bombardieri M, Pitzalis C, Perretti M, Marelli-Berg FM, Mauro C (2015) Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol 13(7):e1002202. https://doi.org/10.1371/journal.pbio.1002202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, Kastenberger M, Bogdan C, Schleicher U, Mackensen A, Ullrich E, Fichtner-Feigl S, Kesselring R, Mack M, Ritter U, Schmid M, Blank C, Dettmer K, Oefner PJ, Hoffmann P, Walenta S, Geissler EK, Pouyssegur J, Villunger A, Steven A, Seliger B, Schreml S, Haferkamp S, Kohl E, Karrer S, Berneburg M, Herr W, Mueller-Klieser W, Renner K, Kreutz M (2016) LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 24(5):657–671. https://doi.org/10.1016/j.cmet.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  181. Ippolito L, Morandi A, Giannoni E, Chiarugi P (2019) Lactate: A metabolic driver in the tumour landscape. Trends Biochem Sci 44(2):153–166. https://doi.org/10.1016/j.tibs.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  182. Liu N, Luo J, Kuang D, Xu S, Duan Y, Xia Y, Wei Z, Xie X, Yin B, Chen F, Luo S, Liu H, Wang J, Jiang K, Gong F, Tang ZH, Cheng X, Li H, Li Z, Laurence A, Wang G, Yang XP (2019) Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2alpha-mediated tumor progression. J Clin Invest 129(2):631–646. https://doi.org/10.1172/JCI123027

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kalinski P (2012) Regulation of immune responses by prostaglandin E2. J Immunol 188(1):21–28. https://doi.org/10.4049/jimmunol.1101029

    Article  CAS  PubMed  Google Scholar 

  184. Luan B, Yoon YS, Le Lay J, Kaestner KH, Hedrick S, Montminy M (2015) CREB pathway links PGE2 signaling with macrophage polarization. Proc Natl Acad Sci U S A 112(51):15642–15647. https://doi.org/10.1073/pnas.1519644112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wondimu A, Liu Y, Su Y, Bobb D, Ma JS, Chakrabarti L, Radoja S, Ladisch S (2014) Gangliosides drive the tumor infiltration and function of myeloid-derived suppressor cells. Cancer Res 74(19):5449–5457. https://doi.org/10.1158/0008-5472.CAN-14-0927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Munn DH, Mellor AL (2007) Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 117(5):1147–1154. https://doi.org/10.1172/JCI31178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185(6):3190–3198. https://doi.org/10.4049/jimmunol.0903670

    Article  CAS  PubMed  Google Scholar 

  188. Eil R, Vodnala SK, Clever D, Klebanoff CA, Sukumar M, Pan JH, Palmer DC, Gros A, Yamamoto TN, Patel SJ, Guittard GC, Yu Z, Carbonaro V, Okkenhaug K, Schrump DS, Linehan WM, Roychoudhuri R, Restifo NP (2016) Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537(7621):539–543. https://doi.org/10.1038/nature19364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Vodnala SK, Eil R, Kishton RJ, Sukumar M, Yamamoto TN, Ha NH, Lee PH, Shin M, Patel SJ, Yu Z, Palmer DC, Kruhlak MJ, Liu X, Locasale JW, Huang J, Roychoudhuri R, Finkel T, Klebanoff CA, Restifo NP (2019) T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science. https://doi.org/10.1126/science.aau0135

    Article  PubMed  PubMed Central  Google Scholar 

  190. Ye J, Ma C, Hsueh EC, Dou J, Mo W, Liu S, Han B, Huang Y, Zhang Y, Varvares MA, Hoft DF, Peng G (2014) TLR8 signaling enhances tumor immunity by preventing tumor-induced T-cell senescence. EMBO Mol Med 6(10):1294–1311. https://doi.org/10.15252/emmm.201403918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ye J, Peng G (2015) Controlling T cell senescence in the tumor microenvironment for tumor immunotherapy. Oncoimmunology 4(3):e994398. https://doi.org/10.4161/2162402X.2014.994398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Goossens P, Rodriguez-Vita J, Etzerodt A, Masse M, Rastoin O, Gouirand V, Ulas T, Papantonopoulou O, Van Eck M, Auphan-Anezin N, Bebien M, Verthuy C, Vu Manh TP, Turner M, Dalod M, Schultze JL, Lawrence T (2019) Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab 29(6):1376–1389. https://doi.org/10.1016/j.cmet.2019.02.016

    Article  CAS  PubMed  Google Scholar 

  193. Li X, Wenes M, Romero P, Huang SC, Fendt SM, Ho PC (2019) Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol 16(7):425–441. https://doi.org/10.1038/s41571-019-0203-7

    Article  CAS  PubMed  Google Scholar 

  194. Feng J, Yang H, Zhang Y, Wei H, Zhu Z, Zhu B, Yang M, Cao W, Wang L, Wu Z (2017) Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene 36(42):5829–5839. https://doi.org/10.1038/onc.2017.188

    Article  CAS  PubMed  Google Scholar 

  195. Feichtinger RG, Lang R (2019) Targeting L-lactate metabolism to overcome resistance to immune therapy of melanoma and other tumor entities. J Oncol 2019:2084195. https://doi.org/10.1155/2019/2084195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kleinfeld AM, Okada C (2005) Free fatty acid release from human breast cancer tissue inhibits cytotoxic T-lymphocyte-mediated killing. J Lipid Res 46(9):1983–1990. https://doi.org/10.1194/jlr.M500151-JLR200

    Article  CAS  PubMed  Google Scholar 

  197. Torisu H, Ono M, Kiryu H, Furue M, Ohmoto Y, Nakayama J, Nishioka Y, Sone S, Kuwano M (2000) Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: possible involvement of TNFalpha and IL-1alpha. Int J Cancer 85(2):182–188

    Article  CAS  PubMed  Google Scholar 

  198. Zhang Y, Yu G, Chu H, Wang X, Xiong L, Cai G, Liu R, Gao H, Tao B, Li W, Li G, Liang J, Yang W (2018) Macrophage-associated PGK1 phosphorylation promotes aerobic glycolysis and tumorigenesis. Mol Cell 71(2):201–215. https://doi.org/10.1016/j.molcel.2018.06.023

    Article  CAS  PubMed  Google Scholar 

  199. Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, Tu Q, Yin D, Lin D, Wong PP, Huang D, Xing Y, Zhao J, Li M, Liu Q, Su F, Su S, Song E (2019) Extracellular vesicle-packaged HIF-1alpha-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol 21(4):498–510. https://doi.org/10.1038/s41556-019-0299-0

    Article  CAS  PubMed  Google Scholar 

  200. Sanmamed MF, Chen L (2018) A Paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175(2):313–326. https://doi.org/10.1016/j.cell.2018.09.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Hegde PS, Chen DS (2020) Top 10 challenges in cancer immunotherapy. Immunity 52(1):17–35. https://doi.org/10.1016/j.immuni.2019.12.011

    Article  CAS  PubMed  Google Scholar 

  202. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9(10):1269–1274. https://doi.org/10.1038/nm934

    Article  CAS  PubMed  Google Scholar 

  203. Platten M, Wick W, Van den Eynde BJ (2012) Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res 72(21):5435–5440. https://doi.org/10.1158/0008-5472.CAN-12-0569

    Article  CAS  PubMed  Google Scholar 

  204. Munn DH, Mellor AL (2016) IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol 37(3):193–207. https://doi.org/10.1016/j.it.2016.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Mbongue JC, Nicholas DA, Torrez TW, Kim NS, Firek AF, Langridge WH (2015) The role of indoleamine 2, 3-dioxygenase in immune suppression and autoimmunity. Vaccines (Basel) 3(3):703–729. https://doi.org/10.3390/vaccines3030703

    Article  CAS  Google Scholar 

  206. Li H, Bullock K, Gurjao C, Braun D, Shukla SA, Bosse D, Lalani AA, Gopal S, Jin C, Horak C, Wind-Rotolo M, Signoretti S, McDermott DF, Freeman GJ, Van Allen EM, Schreiber SL, Stephen Hodi F, Sellers WR, Garraway LA, Clish CB, Choueiri TK, Giannakis M (2019) Metabolomic adaptations and correlates of survival to immune checkpoint blockade. Nat Commun 10(1):4346. https://doi.org/10.1038/s41467-019-12361-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ, Wainwright DA (2015) Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin Cancer Res 21(24):5427–5433. https://doi.org/10.1158/1078-0432.CCR-15-0420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Yue EW, Sparks R, Polam P, Modi D, Douty B, Wayland B, Glass B, Takvorian A, Glenn J, Zhu W, Bower M, Liu X, Leffet L, Wang Q, Bowman KJ, Hansbury MJ, Wei M, Li Y, Wynn R, Burn TC, Koblish HK, Fridman JS, Emm T, Scherle PA, Metcalf B, Combs AP (2017) INCB24360 (Epacadostat), a highly potent and selective indoleamine-2,3-dioxygenase 1 (IDO1) inhibitor for immuno-oncology. ACS Med Chem Lett 8(5):486–491. https://doi.org/10.1021/acsmedchemlett.6b00391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Zakharia Y, Drabick J, Khleif S, Munn D, Link C, Vahanian N, Kennedy E, Rixe O, Milhem M (2015) 514 Results of Phase 1b trial of the Indoleamine 2,3-dioxygenase (IDO) Pathway Inhibitor Indoximod plus Ipilimumab for the treatment of unresectable stage III or IV melanoma. Eur J Cancer 51:S108–S108

    Article  Google Scholar 

  210. Mullard A (2018) IDO takes a blow. Nat Rev Drug Discov 17(5):307. https://doi.org/10.1038/nrd.2018.67

    Article  CAS  PubMed  Google Scholar 

  211. Wu W, Shi X, Xu C (2018) Regulation of T cell signalling by membrane lipids. Nat Rev Immunol 18(3):219. https://doi.org/10.1038/nri.2018.9

    Article  CAS  PubMed  Google Scholar 

  212. Lochner M, Berod L, Sparwasser T (2015) Fatty acid metabolism in the regulation of T cell function. Trends Immunol 36(2):81–91. https://doi.org/10.1016/j.it.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  213. Yang W, Bai Y, Xiong Y, Zhang J, Chen S, Zheng X, Meng X, Li L, Wang J, Xu C, Yan C, Wang L, Chang CC, Chang TY, Zhang T, Zhou P, Song BL, Liu W, Sun SC, Liu X, Li BL, Xu C (2016) Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature 531(7596):651–655. https://doi.org/10.1038/nature17412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Pal P, Gandhi H, Giridhar R, Yadav MR (2013) ACAT inhibitors: the search for novel cholesterol lowering agents. Mini Rev Med Chem 13(8):1195–1219. https://doi.org/10.2174/1389557511313080007

    Article  CAS  PubMed  Google Scholar 

  215. Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, Xing B, Sun W, Ren L, Hu B, Li C, Zhang L, Qin G, Zhang M, Chen N, Zhang M, Huang Y, Zhou J, Zhao Y, Liu M, Zhu X, Qiu Y, Sun Y, Huang C, Yan M, Wang M, Liu W, Tian F, Xu H, Zhou J, Wu Z, Shi T, Zhu W, Qin J, Xie L, Fan J, Qian X, He F, Chinese Human Proteome Project C (2019) Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature 567(7747):257–261. https://doi.org/10.1038/s41586-019-0987-8

    Article  CAS  PubMed  Google Scholar 

  216. Ohta A (2016) A metabolic immune checkpoint: adenosine in tumor microenvironment. Front Immunol 7:109. https://doi.org/10.3389/fimmu.2016.00109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Cai XY, Wang XF, Li J, Dong JN, Liu JQ, Li NP, Yun B, Xia RL, Qin J, Sun YH (2016) High expression of CD39 in gastric cancer reduces patient outcome following radical resection. Oncol Lett 12(5):4080–4086. https://doi.org/10.3892/ol.2016.5189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Perrot I, Michaud HA, Giraudon-Paoli M, Augier S, Docquier A, Gros L, Courtois R, Dejou C, Jecko D, Becquart O, Rispaud-Blanc H, Gauthier L, Rossi B, Chanteux S, Gourdin N, Amigues B, Roussel A, Bensussan A, Eliaou JF, Bastid J, Romagne F, Morel Y, Narni-Mancinelli E, Vivier E, Paturel C, Bonnefoy N (2019) Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep 27(8):2411–2425. https://doi.org/10.1016/j.celrep.2019.04.091

    Article  CAS  PubMed  Google Scholar 

  219. Hammami A, Allard D, Allard B, Stagg J (2019) Targeting the adenosine pathway for cancer immunotherapy. Semin Immunol 42:101304. https://doi.org/10.1016/j.smim.2019.101304

    Article  CAS  PubMed  Google Scholar 

  220. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, Huang X, Caldwell S, Liu K, Smith P, Chen JF, Jackson EK, Apasov S, Abrams S, Sitkovsky M (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A 103(35):13132–13137. https://doi.org/10.1073/pnas.0605251103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Willingham SB, Ho PY, Hotson A, Hill C, Piccione EC, Hsieh J, Liu L, Buggy JJ, McCaffery I, Miller RA (2018) A2AR antagonism with CPI-444 induces antitumor responses and augments efficacy to Anti-PD-(L)1 and Anti-CTLA-4 in preclinical models. Cancer Immunol Res 6(10):1136–1149. https://doi.org/10.1158/2326-6066.CIR-18-0056

    Article  CAS  PubMed  Google Scholar 

  222. Stagg J, Smyth MJ (2010) Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29(39):5346–5358. https://doi.org/10.1038/onc.2010.292

    Article  CAS  PubMed  Google Scholar 

  223. Adinolfi E, Capece M, Amoroso F, De Marchi E, Franceschini A (2015) Emerging roles of P2X receptors in cancer. Curr Med Chem 22(7):878–890. https://doi.org/10.2174/0929867321666141012172913

    Article  CAS  PubMed  Google Scholar 

  224. Burnstock G, Knight GE (2018) The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signal 14(1):1–18. https://doi.org/10.1007/s11302-017-9593-0

    Article  CAS  PubMed  Google Scholar 

  225. De Marchi E, Orioli E, Pegoraro A, Sangaletti S, Portararo P, Curti A, Colombo MP, Di Virgilio F, Adinolfi E (2019) The P2X7 receptor modulates immune cells infiltration, ectonucleotidases expression and extracellular ATP levels in the tumor microenvironment. Oncogene 38(19):3636–3650. https://doi.org/10.1038/s41388-019-0684-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zhou B, Yuan Y, Zhang S, Guo C, Li X, Li G, Xiong W, Zeng Z (2020) Intestinal flora and disease mutually shape the regional immune system in the intestinal tract. Front Immunol 11:575. https://doi.org/10.3389/fimmu.2020.00575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Routy B, Gopalakrishnan V, Daillere R, Zitvogel L, Wargo JA, Kroemer G (2018) The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol 15(6):382–396. https://doi.org/10.1038/s41571-018-0006-2

    Article  CAS  PubMed  Google Scholar 

  228. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Berard M, Nigou J, Opolon P, Eggermont A, Woerther PL, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350(6264):1079–1084. https://doi.org/10.1126/science.aad1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350(6264):1084–1089. https://doi.org/10.1126/science.aac4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, Fidelle M, Flament C, Poirier-Colame V, Opolon P, Klein C, Iribarren K, Mondragon L, Jacquelot N, Qu B, Ferrere G, Clemenson C, Mezquita L, Masip JR, Naltet C, Brosseau S, Kaderbhai C, Richard C, Rizvi H, Levenez F, Galleron N, Quinquis B, Pons N, Ryffel B, Minard-Colin V, Gonin P, Soria JC, Deutsch E, Loriot Y, Ghiringhelli F, Zalcman G, Goldwasser F, Escudier B, Hellmann MD, Eggermont A, Raoult D, Albiges L, Kroemer G, Zitvogel L (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359(6371):91–97. https://doi.org/10.1126/science.aan3706

    Article  CAS  PubMed  Google Scholar 

  231. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, Cogdill AP, Zhao L, Hudgens CW, Hutchinson DS, Manzo T, Petaccia de Macedo M, Cotechini T, Kumar T, Chen WS, Reddy SM, Szczepaniak Sloane R, Galloway-Pena J, Jiang H, Chen PL, Shpall EJ, Rezvani K, Alousi AM, Chemaly RF, Shelburne S, Vence LM, Okhuysen PC, Jensen VB, Swennes AG, McAllister F, Marcelo Riquelme Sanchez E, Zhang Y, Le Chatelier E, Zitvogel L, Pons N, Austin-Breneman JL, Haydu LE, Burton EM, Gardner JM, Sirmans E, Hu J, Lazar AJ, Tsujikawa T, Diab A, Tawbi H, Glitza IC, Hwu WJ, Patel SP, Woodman SE, Amaria RN, Davies MA, Gershenwald JE, Hwu P, Lee JE, Zhang J, Coussens LM, Cooper ZA, Futreal PA, Daniel CR, Ajami NJ, Petrosino JF, Tetzlaff MT, Sharma P, Allison JP, Jenq RR, Wargo JA (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359(6371):97–103. https://doi.org/10.1126/science.aan4236

    Article  CAS  PubMed  Google Scholar 

  232. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ, Gajewski TF (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359(6371):104–108. https://doi.org/10.1126/science.aao3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81903138, 81972776, 81803025, 81772928, 81702907, 81772901, 81672993, 81672683), and the Natural Science Foundation of Hunan Province (2019JJ50778, 2018SK21210, 2018SK21211, 2018JJ3704, 2018JJ3815).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanshan Zhang or Zhaoyang Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, F., Wang, D., Wei, J. et al. Metabolic crosstalk in the tumor microenvironment regulates antitumor immunosuppression and immunotherapy resisitance. Cell. Mol. Life Sci. 78, 173–193 (2021). https://doi.org/10.1007/s00018-020-03581-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03581-0

Keywords

Navigation