Skip to main content
Log in

Nonlinear stability of explicit self-similar solutions for the timelike extremal hypersurfaces in \({\mathbb {R}}^{1+3}\)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of the singularity phenomenon of timelike extremal hypersurfaces in Minkowski spacetime \({\mathbb {R}}^{1+3}\). We find that there are two explicit lightlike self-similar solutions to a graph representation of timelike extremal hypersurfaces in Minkowski spacetime \({\mathbb {R}}^{1+3}\), the geometry of them are two spheres. The linear mode unstable of those lightlike self-similar solutions for the radially symmetric membranes equation is given. After that, we show those self-similar solutions of the radially symmetric membranes equation are nonlinearly stable inside a strictly proper subset of the backward lightcone. This means that the dynamical behavior of those two spheres is as attractors. Meanwhile, we overcome the double roots case (the theorem of Poincaré can’t be used) in solving the difference equation by construction of a Newton’s polygon when we carry out the analysis of spectrum for the linear operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alinhac, S.: Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Commun. Partial Differ. Equ. 14(2), 173–230 (1989)

    Article  Google Scholar 

  2. Barbashov, B.M., Nesterenko, V.V., Chervyakov, A.M.: General solutions of nonlinear equations in the geometric theory of the relativistic string. Commun. Math. Phys. 84, 471–481 (1982)

    Article  MathSciNet  Google Scholar 

  3. Birkhoff, D.G., Trjitzinsky, W.J.: Analytic theory of singular difference equations. Acta. Math. 60, 1–89 (1933)

    Article  MathSciNet  Google Scholar 

  4. Bizoń, P., Biernt, P.: Generic self-similar blowup for equivariant wave maps and Yang–Mills fields in higher dimensions. Commun. Math. Phys. 338, 1443–1450 (2015)

    Article  MathSciNet  Google Scholar 

  5. Brieskorn, E., Knörrer, H.: Plane Algebraic Curves. Translated from the German by John Stillwell. Birkhäuser Verlag, Basel (1986)

  6. Buslaev, V.I., Buslaeva, S.F.: Poincaré theorem on difference equations. Math. Zamet. 78, 943–947 (2005)

    Article  Google Scholar 

  7. Costin, O., Huang, M., Schlag, W.: On the spectral properties of \(L_{\pm }\) in three dimensions. Nonlinearity 25, 125–164 (2012)

    Article  MathSciNet  Google Scholar 

  8. Costin, O., Donninger, R., Xia, X.: A proof for the mode stability of a self-similar wave map. Nonlinearity 29, 2451–2473 (2016)

    Article  MathSciNet  Google Scholar 

  9. Costin, O., Donninger, R., Glogić, I., Huang, M.: On the stability of self-similar solutions to nonlinear wave equations. Commun. Math. Phys. 343, 299–310 (2016)

    Article  MathSciNet  Google Scholar 

  10. Costin, O., Donninger, R., Glogić, I.: Mode stability of self-similar wave maps in higher dimensions. Commun. Math. Phys. 351, 959–972 (2017)

    Article  MathSciNet  Google Scholar 

  11. Donninger, R., Schörkhuber, B.: Stable blowup for wave equations in odd space dimensions. Ann. Inst. H. Poincaré Anal. Non Linéaire 34, 1075–1354 (2017)

  12. Eggers, J., Fontelos, M.A.: The role of self-similarity in singularities of partial differential equations. Nonlinearity 22, R1–R44 (2009)

    Article  MathSciNet  Google Scholar 

  13. Eggers, J., Hoppe, J.: Singularity formation for timelike extremal hypersurfaces. Phys. Lett. B 680, 274–278 (2009)

    Article  MathSciNet  Google Scholar 

  14. Eggers, J., Hoppe, J., Hynek, M., Suramlishvili, N.: Singularities of relativistic membranes. Geom. Flows 1, 17–33 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Elaydi, S.: An Introduction to Difference Equations. Undergraduate Texts in Mathematics, 3rd edn. Springer, New York (2005)

  16. Engel, K.J, Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194, Springer, New York (2000). With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt

  17. Gerald, T.: Ordinary Differential Equations and Dynamical Systems. American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  18. Hoppe, J.: Some classical solutions of relativistic membrane equations in 4-space-time dimensions. Phys. Lett. B 329, 10–14 (1994)

    Article  MathSciNet  Google Scholar 

  19. Hoppe, J.: email communication. (2017)

  20. Hörmander, L.: Implicit Function Theorems. Stanford Lecture notes, University, Stanford (1977)

  21. Hörmander, L.: The boundary problems of physical geodesy. Arch. Ration. Mech. Anal. 62, 1–52 (1976)

    Article  MathSciNet  Google Scholar 

  22. Kong, D.X., Zhang, Q., Zhou, Q.: The dynamics of relativistic strings moving in the Minkowski space. Commun. Math. Phys. 269, 153–174 (2007)

    Article  MathSciNet  Google Scholar 

  23. Liang, J.F.: A singular initial value problem and self-similar solutions of a nonlinear dissipative wave equation. J. Differ. Eqn. 246, 819–844 (2009)

    Article  MathSciNet  Google Scholar 

  24. Lindblad, H.: A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time. Proc. Am. Math. Soc. 132, 1095–1102 (2004)

    Article  MathSciNet  Google Scholar 

  25. Moser, J.: A rapidly converging iteration method and nonlinear partial differential equations I-II. Ann. Scuola Norm. Sup. Pisa. 20(265–313), 499–535 (1966)

    MATH  Google Scholar 

  26. Milnor, T.: Entire timelike minimal surfaces in \(E^{3,1}\). Mich. Math. J. 37, 163–177 (1990)

    Article  Google Scholar 

  27. Nash, J.: The embedding for Riemannian manifolds. Am. Math. 63, 20–63 (1956)

    MATH  Google Scholar 

  28. Nguyen, L., Tian, G.: On smoothness of timelike maximal cylinders in three-dimensional vacuum spacetimes. Class. Quantum Gravity 30(16), 165010 (2013)

    Article  MathSciNet  Google Scholar 

  29. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  Google Scholar 

  30. Sogge, C.D.: Lectures on Nonlinear Wave Equations, Monographs in Analysis, vol. II, International Press, Boston

  31. Wall, H.S.: Polynomials whose zeros have negative real parts. Am. Math. Mon. 52, 308–322 (1945)

    Article  MathSciNet  Google Scholar 

  32. Wei, C.H., Yan, W.P.: On the explicit self-similar motion of the relativistic Chaplygin gas. Europhys. Lett. 122, 10005 (2018)

    Article  Google Scholar 

  33. Witten, E.: Singularities in string theory. ICM I, 495–504 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Yan, W.P.: The motion of closed hypersurfaces in the central force field. J. Diff. Equ. 261, 1973–2005 (2016)

    Article  MathSciNet  Google Scholar 

  35. Yan, W.P.: Dynamical behavior near explicit self-similar blow up solutions for the Born–Infeld equation. Nonlinearity 32, 4682–4712 (2019)

    Article  MathSciNet  Google Scholar 

  36. Yan, W.P., Zhang, B.L.: Long time existence of solution for the bosonic membrane in the light cone gauge. J. Geom. Anal. https://doi.org/10.1007/s12220-019-00269-1.

  37. Zhao, X., Yan, W.P.: Existence of standing waves for quasi-linear Schrödinger equations on \({\mathbb{T}}^n\). Adv. Nonlinear Anal. 9, 978–993 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author expresses his sincere thanks to Prof. Gang. Tian, Prof. Zhifei. Zhang, Prof. Dexing. Kong and Prof. Baoping Liu for their many kind helps and suggestions, Prof. R. Donninger for giving me some important suggestions, Prof. J. Hoppe for his pointing out two explicit solutions being lightlike, and his suggestion and informing me his interesting papers [18]. The author also expresses his sincere thanks to Dr. C.H. Wei for his suggestion on the relationship between the timelike extremal hypersurface equation and Chaplygin gas model [32]. The author is supported by NSFC No. 11771359, and the Fundamental Research Funds for the Central Universities (Grant Nos. 20720190070, 201709000061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Yan.

Additional information

Communicated by A.Chang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the appendix, we give the details on the proof of Lemma 3.5. Firstly, we recall a result of the existence of difference equation, which first established by Birkhoff and Trjitzinsk.

Proposition 5.1

(Birkhoff and Trjitzinsk [3]) The kth-order linear difference equation

$$\begin{aligned} a_0(n)u_n+a_1(n)u_{n+1}+\cdots +a_k(n)u_{n+k}=0,~~~a_0\not \equiv 0,~~a_k\not \equiv 0, \end{aligned}$$

with polynomial coefficients \(a_i\) has precisely k linearly independent formal solutions of the general form

$$\begin{aligned} u_n=e^{Q(n)}n^r\sum _{i=0}^{\infty }n^{\frac{-i}{p}}\sum _{j=0}^mC_{i,j}\ln ^{j}n, \end{aligned}$$
(5.1)

where

$$\begin{aligned} Q(n)=\mu n\ln n+\sum _{s=0}^p\nu _s n^{\frac{s}{p}}, \end{aligned}$$

and \(C_{i,j}\) and \(\nu _s\) are coefficients, \(r,p\in {\mathbb {N}}\), \(\mu p\in {\mathbb {Z}}\) and \(m\in {\mathbb {N}}\cap \{0\}\).

It is hard to get an exact expansion of solution to (3.23) by (5.1). So we have to use other method to analyze the asymptotic behavior of solutions to (3.23).

Let

$$\begin{aligned}&z_{n}^{(1)}=a_n,\\&z_{n}^{(2)}=a_{n+1}=z^{(1)}_{n+1},\\&z_{n}^{(3)}=a_{n+2}=z^{(2)}_{n+1},\\&z_{n}^{(4)}=a_{n+3}=z^{(3)}_{n+1}, \end{aligned}$$

then by (3.23), we have

$$\begin{aligned} z_{n+1}^{(4)}=(2-p_1(n))z^{(3)}_{n}-(1+p_2(n))z^{(1)}_{n}, \end{aligned}$$

where \(z_n^{(i)}\)\((i=1,2,3,4)\) depends on \(\nu \) and \(\kappa \).

Furthermore, let \(z_n=(z^{(1)}_n,z^{(2)}_n,z^{(3)}_n,z^{(4)}_n)\), we have

$$\begin{aligned} \begin{aligned} z_{n+1}&=\left( \begin{array}{llll} 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1\\ -1-p_2(n)&{}\quad 0&{}\quad 2-p_1(n)&{}\quad 0 \end{array} \right) z_n\\&=({\mathcal {D}}+{\mathcal {T}}(n))z_n, \end{aligned} \end{aligned}$$
(5.2)

where

$$\begin{aligned} {\mathcal {D}}=\left( \begin{array}{llll} 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1\\ -1&{}\quad 0&{}\quad 2&{}\quad 0 \end{array} \right) ,~~ {\mathcal {T}}(n)=\left( \begin{array}{llll} 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 0\\ -p_2(n)&{}\quad 0&{}\quad -p_1(n)&{}\quad 0 \end{array} \right) . \end{aligned}$$

Since the matrix \({\mathcal {D}}\) has eigenvalues \(\lambda _1=\lambda _2=1\) and \(\lambda _3=\lambda _4=-1\) (double), we should diagonalize the matrix \({\mathcal {D}}\). Direct computation shows that \(\lambda _1\) has an eigenvector \(\xi _1=(1,1,1,1)\), and \(\lambda _3\) has an eigenvector \(\xi _3=(1,-1,1,-1)\). Note that 1 and \(-1\) are double eigenvalues of \({\mathcal {D}}\). We have to set \((\lambda _1E-{\mathcal {D}})\xi _2=\xi _1\), i.e.

$$\begin{aligned} \left( \begin{array}{llll} 1&{}\quad -1&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad -1&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad -1\\ 1&{}\quad 0&{}\quad -2&{}\quad 1 \end{array} \right) \left( \begin{array}{l} x_1\\ x_2\\ x_3\\ x_4 \end{array} \right) = \left( \begin{array}{l} 1\\ 1\\ 1\\ 1 \end{array} \right) , \end{aligned}$$

solving it, we have a new eigenvector \(\xi _2=(0,1,2,3)\). Here E is the identity matrix.

Similarly, set \((\lambda _3E-{\mathcal {D}})\xi _4=\xi _3\), i.e.

$$\begin{aligned} \left( \begin{array}{llll} -1&{}\quad -1&{}\quad 0&{}\quad 0\\ 0&{}\quad -1&{}\quad -1&{}\quad 0\\ 0&{}\quad 0&{}\quad -1&{}\quad -1\\ 1&{}\quad 0&{}\quad -2&{}\quad -1 \end{array} \right) \left( \begin{array}{l} x_1\\ x_2\\ x_3\\ x_4 \end{array} \right) = \left( \begin{array}{l} 1\\ -1\\ 1\\ -1 \end{array} \right) , \end{aligned}$$

we get the last eigenvector \(\xi _4=(0,1,-2,3)\).

Let

$$\begin{aligned} {\mathcal {P}}=\left( \begin{array}{llll} 1&{}\quad 0&{}\quad 1&{}\quad 0\\ 1&{}\quad 1&{}\quad -1&{}\quad 1\\ 1&{}\quad 2&{}\quad 1&{}\quad -2\\ 1&{}\quad 3&{}\quad -1&{}\quad 3 \end{array} \right) ,~~ {\mathcal {P}}^{-1}=\left( \begin{array}{llll} \frac{1}{2}&{}\quad \frac{3}{4}&{}\quad 0&{}\quad -\frac{1}{4}\\ -\frac{1}{4}&{}\quad -\frac{1}{4}&{}\quad \frac{1}{4}&{}\quad \frac{1}{4}\\ \frac{1}{2}&{}\quad -\frac{3}{4}&{}\quad 0&{}\quad \frac{1}{4}\\ \frac{1}{4}&{}\quad -\frac{1}{4}&{}\quad -\frac{1}{4}&{}\quad \frac{1}{4} \end{array} \right) , \end{aligned}$$

then the matrix \({\mathcal {D}}\) is transformed into Jordan matrix

$$\begin{aligned} {\mathcal {P}}^{-1}{\mathcal {D}}{\mathcal {P}}=J:=\left( \begin{array}{llll} 1&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad -1&{}\quad 1\\ 0&{}\quad 0&{}\quad 0&{}\quad -1 \end{array} \right) . \end{aligned}$$
(5.3)

So let \(z_n={\mathcal {P}}y_n^{(1)}\), by (5.2), we get

$$\begin{aligned} y_{n+1}^{(1)}=(J+{\mathcal {P}}^{-1}{\mathcal {T}}(n){\mathcal {P}})y_n^{(1)}, \end{aligned}$$
(5.4)

where

$$\begin{aligned} {\mathcal {P}}^{-1}{\mathcal {T}}(n){\mathcal {P}}=J:=\left( \begin{array}{llll} \frac{p_1(n)+p_2(n)}{4}&{}\quad \frac{p_1(n)}{2}&{}\quad \frac{p_1(n)+p_2(n)}{4}&{}\quad -\frac{p_1(n)}{2}\\ -\frac{p_1(n)+p_2(n)}{4}&{}\quad -\frac{p_1(n)}{2}&{}\quad -\frac{p_1(n)+p_2(n)}{4}&{}\quad \frac{p_1(n)}{2}\\ -\frac{p_1(n)+p_2(n)}{4}&{}\quad -\frac{p_1(n)}{2}&{}\quad -\frac{p_1(n)+p_2(n)}{4}&{}\quad \frac{p_1(n)}{2}\\ -\frac{p_1(n)+p_2(n)}{4}&{}\quad -\frac{p_1(n)}{2}&{}\quad -\frac{p_1(n)+p_2(n)}{4}&{}\quad \frac{p_1(n)}{2} \end{array} \right) . \end{aligned}$$

Now our task is to transform the Jordan matrix J into a diagonal matrix with four different eigenvalues.

Lemma 5.1

There are two inverse matrices \({\mathcal {M}}_1(n)\) and \({\mathcal {M}}_2(n)\) depending on n such that

$$\begin{aligned} {\mathcal {M}}_1(n)J{\mathcal {M}}_2(n)=\left( \begin{array}{llll} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1+\frac{1}{n}&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad -1&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad -(1+\frac{1}{n}) \end{array} \right) , \end{aligned}$$
(5.5)

where \(n=1,2,3,\ldots \) and J is the Jordan matrix in (5.3).

Proof

This proof is based on observation. Let

$$\begin{aligned} {\mathcal {P}}_1=\left( \begin{array}{llll} 1&{}\quad 2&{}\quad 0&{}\quad 0\\ 1&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1 \end{array} \right) ,~~ {\mathcal {P}}_1^{-1}=\left( \begin{array}{llll} -1&{}\quad 2&{}\quad 0&{}\quad 0\\ 1&{}\quad -1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1 \end{array} \right) , \end{aligned}$$

and

$$\begin{aligned} {\mathcal {P}}_2=\left( \begin{array}{llll} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad -1&{}\quad -2\\ 0&{}\quad 0&{}\quad 1&{}\quad 1 \end{array} \right) ,~~ {\mathcal {P}}_2^{-1}=\left( \begin{array}{llll} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 2\\ 0&{}\quad 0&{}\quad -1&{}\quad -1 \end{array} \right) , \end{aligned}$$

then we derive

$$\begin{aligned} {\mathcal {P}}_2^{-1}{\mathcal {P}}_1^{-1}J{\mathcal {P}}_1{\mathcal {P}}_2=\left( \begin{array}{llll} 0&{}\quad -1&{}\quad 0&{}\quad 0\\ 1&{}\quad 2&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1\\ 0&{}\quad 0&{}\quad -1&{}\quad -2 \end{array} \right) . \end{aligned}$$
(5.6)

To diagonalize above matrix with four different eigenvalues, we introduce a matrix depending on n

$$\begin{aligned} {\mathcal {P}}_3(n)=\left( \begin{array}{llll} 1&{}\quad 1&{}\quad 0&{}\quad 0\\ -1&{}\quad -(1+\frac{1}{n})&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1 \end{array} \right) , \end{aligned}$$

then

$$\begin{aligned} {\mathcal {P}}_3^{-1}(n+1)=\left( \begin{array}{llll} n+2&{}\quad n+1&{}\quad 0&{}\quad 0\\ -(n+1)&{}\quad -(n+1)&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1 \end{array} \right) . \end{aligned}$$

By (5.6), direct computation shows that

$$\begin{aligned} {\mathcal {P}}_3^{-1}(n+1){\mathcal {P}}_2^{-1}{\mathcal {P}}_1^{-1}J{\mathcal {P}}_1{\mathcal {P}}_2{\mathcal {P}}_3(n)=\left( \begin{array}{llll} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1+\frac{1}{n}&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad 1\\ 0&{}\quad 0&{}\quad -1&{}\quad -2 \end{array} \right) . \end{aligned}$$
(5.7)

Thus we introduce another matrix

$$\begin{aligned} {\mathcal {P}}_4(n)=\left( \begin{array}{llll} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 1&{}\quad 1\\ 0&{}\quad 0&{}\quad -1&{}\quad -(1+\frac{1}{n}) \end{array} \right) , \end{aligned}$$

then

$$\begin{aligned} {\mathcal {P}}_4^{-1}(n+1)=\left( \begin{array}{llll} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad n+2&{}\quad n+1\\ 0&{}\quad 0&{}\quad -(n+1)&{}\quad -(n+1) \end{array} \right) . \end{aligned}$$

which combining with (5.7) gives that

$$\begin{aligned} {\mathcal {M}}_1(n)J{\mathcal {M}}_2(n)=\left( \begin{array}{llll} 1&{}\quad 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 1+\frac{1}{n}&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad -1&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad -(1+\frac{1}{n}) \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned}&{\mathcal {M}}_1(n)={\mathcal {P}}_4^{-1}(n+1){\mathcal {P}}_3^{-1}(n+1){\mathcal {P}}_2^{-1}{\mathcal {P}}_1^{-1},\\&{\mathcal {M}}_2(n)={\mathcal {P}}_1{\mathcal {P}}_2{\mathcal {P}}_3(n){\mathcal {P}}_4(n). \end{aligned}$$

\(\square \)

We now return to the system (5.4). Set

$$\begin{aligned}&y_n^{(1)}={\mathcal {P}}_1y_n^{(2)},\\&y_n^{(2)}={\mathcal {P}}_2y_n^{(3)}, \end{aligned}$$

we derive

$$\begin{aligned} y_{n+1}^{(3)}=({\mathcal {P}}_2^{-1}{\mathcal {P}}_1^{-1}J{\mathcal {P}}_1{\mathcal {P}}_2+{\mathcal {P}}_2^{-1}{\mathcal {P}}_1^{-1}{\mathcal {P}}^{-1}{\mathcal {T}}(n){\mathcal {P}}{\mathcal {P}}_1{\mathcal {P}}_2)y_n^{(3)}. \end{aligned}$$
(5.8)

Set

$$\begin{aligned}&y_n^{(3)}={\mathcal {P}}_3(n)y_n^{(4)},~~y_{n+1}^{(3)}={\mathcal {P}}_3(n+1)y_{n+1}^{(4)}\\&y_n^{(4)}={\mathcal {P}}_4y_n^{(5)},~~y_{n+1}^{(4)}={\mathcal {P}}_4y_{n+1}^{(5)}, \end{aligned}$$

and

$$\begin{aligned}&{\mathcal {M}}_1(n)={\mathcal {P}}_4^{-1}(n+1){\mathcal {P}}_3^{-1}(n+1){\mathcal {P}}_2^{-1}{\mathcal {P}}_1^{-1},\\&{\mathcal {M}}_2(n)={\mathcal {P}}_1{\mathcal {P}}_2{\mathcal {P}}_3(n){\mathcal {P}}_4(n). \end{aligned}$$

Taking advantage of the process of proof in Lemma 5.1, we derive from (5.8) that

$$\begin{aligned} y_{n+1}^{(5)}= & {} ({\mathcal {M}}_1(n)J{\mathcal {M}}_2(n)+{\mathcal {M}}_1(n){\mathcal {P}}^{-1}{\mathcal {T}}(n){\mathcal {P}}{\mathcal {M}}_2(n))y_n^{(5)}\nonumber \\= & {} (\tilde{{\mathcal {D}}}+\tilde{{\mathcal {T}}}(n))y_n^{(5)},~~~~n\ge 1, \end{aligned}$$
(5.9)

where \(\tilde{{\mathcal {D}}}:={\mathcal {M}}_1(n)J{\mathcal {M}}_2(n)\) is a diagonal matrix defined in (5.5), \(\tilde{{\mathcal {T}}}(n)\) is a off-diagonal matrix, which is

$$\begin{aligned} \begin{array}{lll} &{}&{}\tilde{{\mathcal {T}}}(n)={\mathcal {M}}_1(n){\mathcal {P}}^{-1}{\mathcal {T}}(n){\mathcal {P}}{\mathcal {M}}_2(n)\\ &{}&{}\quad =\left( \begin{array}{llll} \frac{(n+4)(2p_1+p_2)}{4}&{}\quad \frac{p_1(n+\frac{16}{n}+8)+p_2(n+\frac{8}{n}+6)}{4}&{}\quad \frac{p_1(5n+2)+2(n+1)p_2}{4}&{}\quad \frac{p_1(5n^2-2n-16)+2(n^2-4)}{4n}\\ \frac{-(n+1)(5p_1+3p_2)}{4}&{}\quad \frac{-p_1(n+1)(5+\frac{8}{n})-p_2(3+\frac{4}{n})}{4}&{}\quad \frac{(n+1)(p_1+p_2)}{4}&{}\quad \frac{p_1(n^2+5n+4)+p_2(n^2+3n+2)}{4n}\\ \frac{(n+4)(p_1+p_2)}{4}&{}\quad \frac{(n+4)[(1+\frac{4}{n})p_1+(1+\frac{2}{n})p_2]}{4}&{}\quad \frac{-(n+4)(p_1+p_2)}{4}&{}\quad \frac{-(n+4)(5p_1+3p_2)}{4n}\\ \frac{-(n+1)(p_1+p_2)}{4}&{}\quad \frac{-(n+1)[(1+\frac{4}{n})p_1+(1+\frac{2}{n})p_2]}{4}&{}\quad \frac{(n+1)(p_1-3p_2)}{4}&{}\quad \frac{(n+1)(5p_1-7p_2)}{4n} \end{array} \right) , \end{array} \end{aligned}$$
(5.10)

where \(p_1:=p_1(n)\) and \(p_2:=p_2(n)\) defined in (3.24)–(3.25), respectively.

So it follows from (5.9) that

$$\begin{aligned} y^{(5)}_{n+1}=(\tilde{{\mathcal {D}}}(n)+\tilde{{\mathcal {T}}}(n))\cdot (\tilde{{\mathcal {D}}}(n-1)+\tilde{{\mathcal {T}}}(n-1))\cdot \ldots \cdot (\tilde{{\mathcal {D}}}(1)+\tilde{{\mathcal {T}}}(1))y_1^{(5)}, \end{aligned}$$

which combining with (5.10) that \(y^{(5)}_{n+1}\) has an unbounded solution depending on n. This is coincident with the result of Birkhoff and Trjitzinsk  [3]. Thus we complete the proof of Lemma 3.5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W. Nonlinear stability of explicit self-similar solutions for the timelike extremal hypersurfaces in \({\mathbb {R}}^{1+3}\). Calc. Var. 59, 124 (2020). https://doi.org/10.1007/s00526-020-01798-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01798-2

Mathematics Subject Classification

Navigation