Skip to main content
Log in

Sphere theorems for Lagrangian and Legendrian submanifolds

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove some differentiable sphere theorems and topological sphere theorems for Lagrangian submanifolds in Kähler manifold and Legendrian submanifolds in Sasaki space form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, B., Baker, C.: Mean curvature flow of pinched submanifolds to spheres. J. Differ. Geom. 85(3), 357–395 (2010). http://projecteuclid.org/euclid.jdg/1292940688

  2. Aubin, T.: Métriques riemanniennes et courbure. J. Differ. Geom. 4, 383–424 (1970). http://projecteuclid.org/euclid.jdg/1214429638

  3. Böhm, C., Wilking, B.: Manifolds with positive curvature operators are space forms. Ann. Math. 167(3), 1079–1097 (2008). https://doi.org/10.4007/annals.2008.167.1079

    Article  MathSciNet  MATH  Google Scholar 

  4. Brendle, S.: A general convergence result for the Ricci flow in higher dimensions. Duke Math. J. 145(3), 585–601 (2008). https://doi.org/10.1215/00127094-2008-059

    Article  MathSciNet  MATH  Google Scholar 

  5. Brendle, S.: Ricci flow and the sphere theorem. Vol. 111 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI. (2010) https://doi.org/10.1090/gsm/111

  6. Brendle, S., Schoen, R.: Classification of manifolds with weakly \(1/4\)-pinched curvatures. Acta Math. 200(1), 1–13 (2008). https://doi.org/10.1007/s11511-008-0022-7

    Article  MathSciNet  MATH  Google Scholar 

  7. Brendle, S., Schoen, R.: Manifolds with \(1/4\)-pinched curvature are space forms. J. Amer. Math. Soc. 22(1), 287–307 (2009). https://doi.org/10.1090/S0894-0347-08-00613-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, B.: Jacobi’s elliptic functions and Lagrangian immersions. Proc. R. Soc. Edinburgh Sect. A 126(4), 687–704 (1996). https://doi.org/10.1017/S0308210500023003

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, B.: Some new obstructions to minimal and Lagrangian isometric immersions. Jpn. J. Math. 26(1), 105–127 (2000). https://doi.org/10.4099/math1924.26.105

    Article  MathSciNet  MATH  Google Scholar 

  10. Cui, Q., Sun, L.: Some differentiable sphere theorems. Calc. Var. Partial Differ. Equ. 58(2), 58:43 (2019). https://doi.org/10.1007/s00526-019-1487-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Gromov, M.: A topological technique for the construction of solutions of differential equations and inequalities, 221–225 (1971)

  12. Gromov, M.: Pseudo holomorphic curves in symplectic manifolds. Invent. Math. 82(2), 307–347 (1985). https://doi.org/10.1007/BF01388806

    Article  MathSciNet  MATH  Google Scholar 

  13. Gu, J., Xu, H.: The sphere theorems for manifolds with positive scalar curvature. J. Differ. Geom. 92(3), 507–545 (2012). http://projecteuclid.org/euclid.jdg/1354110198

  14. Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982). http://projecteuclid.org/euclid.jdg/1214436922

  15. Harvey, R., Lawson, H.: Calibrated geometries. Acta Math. 148, 47–157 (1982). https://doi.org/10.1007/BF02392726

    Article  MathSciNet  MATH  Google Scholar 

  16. Karcher, H.: A short proof of Berger’s curvature tensor estimates. Proc. Amer. Math. Soc. 26, 642–644 (1970). https://doi.org/10.2307/2037127

    Article  MathSciNet  MATH  Google Scholar 

  17. Lawson, H., Simons, J.: On stable currents and their application to global problems in real and complex geometry. Ann. Math. 2(98), 427–450 (1973). https://doi.org/10.2307/1970913

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, H., Wang, X.: A differentiable sphere theorem for compact Lagrangian submanifolds in complex Euclidean space and complex projective space. Commun. Anal. Geom. 22(2), 269–288 (2014). https://doi.org/10.4310/CAG.2014.v22.n2.a4

    Article  MathSciNet  MATH  Google Scholar 

  19. Micallef, M., Moore, J.: Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes. Ann. Math. 127(1), 199–227 (1988). https://doi.org/10.2307/1971420

    Article  MathSciNet  MATH  Google Scholar 

  20. Micallef, M., Wang, M.: Metrics with nonnegative isotropic curvature. Duke Math. J. 72(3), 649–672 (1993). https://doi.org/10.1215/S0012-7094-93-07224-9

    Article  MathSciNet  MATH  Google Scholar 

  21. Pipoli, G., Sinestrari, C.: Mean curvature flow of pinched submanifolds of \(\mathbb{CP}^n\). Commun. Anal. Geom. 25(4), 799–846 (2017). https://doi.org/10.4310/CAG.2017.v25.n4.a3

    Article  MATH  Google Scholar 

  22. Seshadri, H.: Manifolds with nonnegative isotropic curvature. Commun. Anal. Geom. 17(4), 621–635 (2009). https://doi.org/10.4310/CAG.2009.v17.n4.a2

    Article  MathSciNet  MATH  Google Scholar 

  23. Strominger, A., Yau, S., Zaslow, E.: Mirror symmetry is \(T\)-duality. Nuclear Phys. B 479(1–2), 243–259 (1996). https://doi.org/10.1016/0550-3213(96)00434-8

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun, J., Sun, L.: Sphere theorems for submanifolds in Kähler manifold. Accepted by Math. Res, Let (2019)

  25. Xu, H., Gu, J.: An optimal differentiable sphere theorem for complete manifolds. Math. Res. Lett. 17(6), 1111–1124 (2010). https://doi.org/10.4310/MRL.2010.v17.n6.a10

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu, H., Gu, J.: Geometric, topological and differentiable rigidity of submanifolds in space forms. Geom. Funct. Anal. 23(5), 1684–1703 (2013). https://doi.org/10.1007/s00039-013-0231-x

    Article  MathSciNet  MATH  Google Scholar 

  27. Yano, K., Kon, M.: Structures on manifolds. Vol. 3 of Series in Pure Mathematics. World Scientific Publishing Co., Singapore (1984)

Download references

Acknowledgements

The authors would like to thank the referee for his/her careful reading and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linlin Sun.

Additional information

Communicated by J. Jost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by the National Natural Science Foundation of China (Grant No. 11401440). Part of the work was finished when the first author was a visiting scholar at MIT supported by China Scholarship Council (CSC) and the Youth Talent Training Program of Wuhan University. The author would like to express his gratitude to Professor Tobias Colding for his invitation and to MIT for their hospitality. The second author was supported by the National Natural Science Foundation of China (Grant Nos. 11801420, 11971358) and the Youth Talent Training Program of Wuhan University. The author thanks the Max Planck Institute for Mathematics in the Sciences for good working conditions when this work was carried out. They also thank Dr. Yong Luo for helpful discussions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Sun, L. Sphere theorems for Lagrangian and Legendrian submanifolds. Calc. Var. 59, 125 (2020). https://doi.org/10.1007/s00526-020-01797-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01797-3

Mathematics Subject Classification

Navigation