Skip to main content
Log in

Convex integration for diffusion equations and Lipschitz solutions of polyconvex gradient flows

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with nonuniqueness and instability of the initial-boundary value problem for certain general systems of nonlinear diffusion equations. We explore the diffusion problems using the convex integration framework of nonhomogeneous space-time partial differential inclusions. Under a non-degeneracy (openness) condition called Condition (OC), we establish some nonuniqueness and instability results concerning Lipschitz solutions for such diffusion systems. For parabolic systems, this Condition (OC) proves to be compatible with strong polyconvexity. As a result, we prove that the initial-boundary value problem for gradient flows of certain \(2\times 2\) strongly polyconvex functionals possesses weakly* convergent sequences of exact Lipschitz solutions whose weak* limits are not a weak solution. Such an instability result cannot be obtained from the corresponding elliptic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86, 125–145 (1984)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser Verlag, Basel (2005)

    MATH  Google Scholar 

  3. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MathSciNet  Google Scholar 

  4. Ball, J.M.: Strict convexity, strong ellipticity and regularity in the calculus of variations. Math. Proc. Camb. Philos. Soc. 87, 501–513 (1980)

    Article  MathSciNet  Google Scholar 

  5. Bögelein, V., Duzaar, F., Mingione, G.: The Regularity of General Parabolic Systems with Degenerate Diffusion, vol. 221, p. 1041. Memoirs of the American Mathematical Society, Ann Arbor (2013)

    MATH  Google Scholar 

  6. Brézis, H.: Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam (1973)

    MATH  Google Scholar 

  7. Buckmaster, T., Vicol, V.: Nonuniqueness of weak solutions to the Navier–Stokes equation. Ann. Math. 189, 101–144 (2019)

    Article  MathSciNet  Google Scholar 

  8. Cordoba, D., Faraco, D., Gancedo, F.: Lack of uniqueness for weak solutions of the incompressible porous media equation. Arch. Ration. Mech. Anal. 200(3), 725–746 (2011)

    Article  MathSciNet  Google Scholar 

  9. Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  10. Dacorogna, B., Marcellini, P.: General existence theorems for Hamilton–Jacobi equations in the scalar and vectorial cases. Acta Math. 178(1), 1–37 (1997)

    Article  MathSciNet  Google Scholar 

  11. Dacorogna, B., Marcellini, P.: Implicit Partial Differential Equations. Birkhäuser Boston Inc, Boston (1999)

    Book  Google Scholar 

  12. Demoulini, S.: Young measure solutions for a nonlinear parabolic equation of forward–backward type. SIAM J. Math. Anal. 27(2), 376–403 (1996)

    Article  MathSciNet  Google Scholar 

  13. Demoulini, S., Stuart, D., Tzavaras, A.E.: A variational approximation scheme for three-dimensional elastodynamics with polyconvex energy. Arch. Ration. Mech. Anal. 157(4), 325–344 (2001)

    Article  MathSciNet  Google Scholar 

  14. Demoulini, S., Stuart, D., Tzavaras, A.E.: Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics. Arch. Ration. Mech. Anal. 205(3), 927–961 (2012)

    Article  MathSciNet  Google Scholar 

  15. De Lellis, C., Székelyhidi Jr., L.: The Euler equations as a differential inclusion. Ann. Math. 170(3), 1417–1436 (2009)

    Article  MathSciNet  Google Scholar 

  16. Evans, L.C.: Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95, 227–252 (1986)

    Article  MathSciNet  Google Scholar 

  17. Evans, L.C., Savin, O., Gangbo, W.: Diffeomorphisms and nonlinear heat flows. SIAM J. Math. Anal. 37(3), 737–751 (2005)

    Article  MathSciNet  Google Scholar 

  18. Gromov, M.: Partial Differential Relations. Springer, Berlin (1986)

    Book  Google Scholar 

  19. Isett, P.: A proof of Onsager’s conjecture. Ann. Math. 188(3), 871–963 (2018)

    Article  MathSciNet  Google Scholar 

  20. Kim, S., Koh, Y.: Two-phase solutions for one-dimensional non-convex elastodynamics. Arch. Ration. Mech. Anal. 232(1), 489–529 (2019)

    Article  MathSciNet  Google Scholar 

  21. Kim, S., Yan, B.: Convex integration and infinitely many weak solutions to the Perona–Malik equation in all dimensions. SIAM J. Math. Anal. 47(4), 2770–2794 (2015)

    Article  MathSciNet  Google Scholar 

  22. Kim, S., Yan, B.: On Lipschitz solutions for some forward–backward parabolic equations. II: the case against Fourier. Calc. Var., 56(3), Art. 67 (2017)

  23. Kim, S., Yan, B.: On Lipschitz solutions for some forward–backward parabolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 35(1), 65–100 (2018)

    Article  MathSciNet  Google Scholar 

  24. Kinderlehrer, D., Pedregal, P.: Weak convergence of integrands and the Young measure representation. SIAM J. Math. Anal. 23(1), 1–19 (1992)

    Article  MathSciNet  Google Scholar 

  25. Kirchheim, B.: Rigidity and Geometry of Microstructures. Habilitation Thesis, Univ. Leipzig (2003)

  26. Kirchheim, B., Müller, S., Šverák, V.: Studying nonlinear PDE by geometry in matrix space. In: Hildebrandt, S., Karcher, H. (eds.) Geometric Analysis and Nonlinear Partial Differential Equations, pp. 347–395. Springer, Berlin (2003)

    Chapter  Google Scholar 

  27. Lewicka, M., Pakzad, M.R.: Convex integration for the Monge–Ampère equations in two dimensions. Anal. PDE 10(3), 695–727 (2017)

    Article  MathSciNet  Google Scholar 

  28. Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific Publishing Co. Inc, River Edge (1996)

    Book  Google Scholar 

  29. Morrey Jr., C.B.: Quasiconvexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2, 25–53 (1952)

    Article  Google Scholar 

  30. Müller, S., Rieger, M.O., Šverák, V.: Parabolic systems with nowhere smooth solutions. Arch. Ration. Mech. Anal. 177(1), 1–20 (2005)

    Article  MathSciNet  Google Scholar 

  31. Müller, S., Šverák, V.: Attainment results for the two-well problem by convex integration. In: Jost, J. (ed.) Geometric Analysis and the Calculus of Variations, pp. 239–251. Internat. Press, Cambridge (1996)

    MATH  Google Scholar 

  32. Müller, S., Šverák, V.: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. (2) 157(3), 715–742 (2003)

    Article  MathSciNet  Google Scholar 

  33. Müller, S., Sychev, M.: Optimal existence theorems for nonhomogeneous differential inclusions. J. Funct. Anal. 181(2), 447–475 (2001)

    Article  MathSciNet  Google Scholar 

  34. Shvydkoy, R.: Convex integration for a class of active scalar equations. J. Am. Math. Soc. 24(4), 1159–1174 (2011)

    Article  MathSciNet  Google Scholar 

  35. Székelyhidi Jr., L.: The regularity of critical points of polyconvex functionals. Arch. Ration. Mech. Anal. 172(1), 133–152 (2004)

    Article  MathSciNet  Google Scholar 

  36. Tartar, L.: Some remarks on separately convex functions. In: Kinderlehrer, D., James, R.D., Luskin, M., Ericksen, J.L. (eds.) Microstructure and Phase Transitions, IMA Vol. Math. Appl., vol. 54, pp. 191–204. Springer, New York (1993)

    Chapter  Google Scholar 

  37. Yan, B.: On \(W^{1, p}\)-solvability for vectorial Hamilton–Jacobi systems. Bull. Sci. Math. 127, 467–483 (2003)

    Article  MathSciNet  Google Scholar 

  38. Zhang, K.: Existence of infinitely many solutions for the one-dimensional Perona–Malik model. Calc. Var. 26(2), 171–199 (2006)

    Article  MathSciNet  Google Scholar 

  39. Zhang, K.: On existence of weak solutions for one-dimensional forward–backward diffusion equations. J. Differ. Equ. 220(2), 322–353 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank the anonymous referee for helpful suggestions that improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baisheng Yan.

Additional information

Communicated by J. Ball.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, B. Convex integration for diffusion equations and Lipschitz solutions of polyconvex gradient flows. Calc. Var. 59, 123 (2020). https://doi.org/10.1007/s00526-020-01785-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01785-7

Mathematics Subject Classification

Navigation