Skip to main content
Log in

Structural and Functional Features of Ca2+ Transport Systems in Liver Mitochondria of Rats with Experimental Hyperthyroidism

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We analyzed structural and functional features of the main mitochondrial Ca2+-transporting systems, mitochondrial Ca2+ uniporter complex (MCUC) and Ca2+-dependent cyclosporin A-sensitive mitochondrial permeability transition pore (MPT pore), in rats with hyperthyroid state. It was found that, the rate of Ca2+ accumulation by rat liver mitochondria in this pathology increases by 1.3 times, which can be associated with higher level of the channel-forming subunit of the uniporter MCU and lower content of dominant-negative subunit of this complex MCUb. At the same time, the level of the regulatory subunit MICU1 remained unchanged. It was shown that calcium retention capacity of liver mitochondria in rats with experimental hyperthyroidism decreased by 2 times in comparison with the control, which attested to reduced resistance of liver mitochondria of hyperthyroid rats to induction of the MPT pore. The observed changes are consistent with the data on increased amount of cyclophilin D, a mitochondrial matrix peptidyl-prolyl isomerase that is known to modulate the MPT pore opening and expression of the Ppif gene that encodes mitochondrial cyclophilin D in rats with experimental hyperthyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Belosludtsev KN, Belosludtseva NV, Mironova GD, Dubinin MV. Mitochondrial Ca2+ Transport: Mechanisms, Molecular Structures, and Role in Cells. Biochemistry (Moscow). 2019;84(6):593-607.

    Article  CAS  Google Scholar 

  2. Belosludtsev KN, Saris NE, Belosludtseva NV, Trudovishnikov AS, Lukyanova LD, Mironova GD. Physiological aspects of the mitochondrial cyclosporin A-insensitive palmitate/Ca2+-induced pore: tissue specificity, age profile and dependence on the animal’s adaptation to hypoxia. J. Bioenerg. Biomembr. 2009;41(4):395-401.

    Article  CAS  Google Scholar 

  3. Briston T, Selwood DL, Szabadkai G, Duchen MR. Mitochondrial permeability transition: a molecular lesion with multiple drug targets. Trends Pharmacol. Sci. 2019;40(1):50-70.

    Article  CAS  Google Scholar 

  4. Castilho RF, Kowaltowski AJ, Vercesi AE. 3,5,3’-triiodothyronine induces mitochondrial permeability transition mediated by reactive oxygen species and membrane protein thiol oxidation. Arch. Biochem. Biophys. 1998;354(1):151-157.

    Article  CAS  Google Scholar 

  5. Dümmler K, Müller S, Seitz HJ. Regulation of adenine nucleotide translocase and glycerol 3-phosphate dehydrogenase expression by thyroid hormones in different rat tissues. Biochem. J. 1996;317(Pt 3):913-918.

    Article  Google Scholar 

  6. Lanni A, Moreno M, Goglia F. Mitochondrial actions of thyroid hormone. Compr. Physiol. 2016;6(4):1591-1607.

    Article  Google Scholar 

  7. Moreno M, de Lange P, Lombardi A, Silvestri E, Lanni A, Goglia F. Metabolic effects of thyroid hormone derivatives. Thyroid. 2008;18(2):239-253.

    Article  CAS  Google Scholar 

  8. Psarra AM, Solakidi S, Sekeris CE. The mitochondrion as a primary site of action of steroid and thyroid hormones: presence and action of steroid and thyroid hormone receptors in mitochondria of animal cells. Mol. Cell. Endocrinol. 2006;246(1-2):21-33.

    Article  CAS  Google Scholar 

  9. Robles SG, Franco M, Zazueta C, García N, Correa F, García G, Chávez E. Thyroid hormone may induce changes in the concentration of the mitochondrial calcium uniporter. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2003;135(1):177-182.

    Google Scholar 

  10. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3(6):1101-1108.

    Article  CAS  Google Scholar 

  11. Venditti P, De Rosa R, Di Meo S. Effect of thyroid state on susceptibility to oxidants and swelling of mitochondria from rat tissues. Free Radic. Biol. Med. 2003;35(5):485-394.

    Article  CAS  Google Scholar 

  12. Venediktova NI, Pavlik LL, Belosludtseva NV, Khmil NV, Murzaeva SV, Mironova GD. Formation of lamellar bodies in rat liver mitochondria in hyperthyroidism. J. Bioenerg. Biomembr. 2018;50(4):289-295.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Belosludtsev.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 169, No. 2, pp. 182-187, February, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belosludtseva, N.V., Talanov, E.Y., Venediktova, N.I. et al. Structural and Functional Features of Ca2+ Transport Systems in Liver Mitochondria of Rats with Experimental Hyperthyroidism. Bull Exp Biol Med 169, 224–228 (2020). https://doi.org/10.1007/s10517-020-04855-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-04855-0

Key Words

Navigation