Skip to main content

Advertisement

Log in

Performance analysis of piezoelectric energy harvesters with a tip mass and nonlinearities of geometry and damping under parametric and external excitations

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Based on the Hamilton’s principle, a nonlinear mathematical model of the cantilever-type piezoelectric energy harvester with a tip mass is systematically derived under parametric and external excitations. The proposed model accounts for geometric and electro-mechanical coupling nonlinearities, damping nonlinearity and the inextensibility condition of beam. Using the Galerkin approach, the proposed model is converted into the electro-mechanical coupling Mathieu–Duffing equations. Analytical solutions of the frequency–response curves are presented by the multiple scales method. Nonlinear characteristics of the energy harvesters are explored under parametric excitation and hybrid parametric and external excitations. Analytical results provided new insights into the effects of tip mass and nonlinear damping on the performance of the energy harvester. The results show that with the tip mass increasing, the frequency–response curves of the energy harvester change from the nonlinear hardening type to the nonlinear softening type and the operating bandwidth and the output voltages of the energy harvester enlarge. For parametrical excitation, variation of the quadratic damping does not alter the initial threshold of the harvesters and the position of two transcritical bifurcation points of the frequency–response curves. The initiation threshold decreases with the tip mass increasing. Hybrid parametric and external excitations enhance the bandwidth and output voltage of the energy harvester, which will probably be used as an ideal way to improve the performance of the energy harvesting system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Sodano, H., Inman, D.J., Park, G.: Generation and storage of electricity from power harvesting devices. J. Intell. Mater. Syst. Struct. 16, 67–75 (2005)

    Google Scholar 

  2. Kim, H., Kim, J.H., Kim, J.: A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12, 1129–1141 (2011)

    Google Scholar 

  3. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, R1–R21 (2007)

    Google Scholar 

  4. Daqaq, M.F., Masana, R., Ertur, A., Quinn, D.D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. ASME Appl. Mech. Rev. 66, 040801 (2014)

    Google Scholar 

  5. Khalid, S., Raouf, I., Khan, A., Kim, N., Kim, H.S.: A review of humanpowered energy harvesting for smart electronics: recent progress and challenges. Int. J. Precis. Eng. Manuf-Green Technol. 6, 821–851 (2019)

    Google Scholar 

  6. Krommer, M.: On the correction of the Bernoulli–Euler beam theory for smart piezoelectric beams. Smart Mater. Struct. 10, 668–680 (2001)

    Google Scholar 

  7. Krommer, M., Irschik, H.: An electromechanically coupled theory for piezoelastic beams taking into account the charge equation of electrostatics. Acta Mech. 154, 141–158 (2002)

    MATH  Google Scholar 

  8. Schoeftner, J., Krommer, M.: Single point vibration control for a passive piezoelectric Bernoulli–Euler beam subjected to spatially varying harmonic loads. Acta Mech. 223, 1983–1998 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Roundy, S., Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131–1142 (2004)

    Google Scholar 

  10. duToit, N.E., Wardle, B.L., Kim, S.: Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr. Ferroelectr. 71, 121–160 (2005)

    Google Scholar 

  11. Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009)

    Google Scholar 

  12. Tang, L.P., Wang, J.G.: Size effect of tip mass on performance of cantilevered piezoelectric energy harvester with a dynamic magnifier. Acta Mech. 228, 3997–4015 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Tang, L.P., Wang, J.G.: Modeling and analysis of cantilever piezoelectric energy harvester with a new-type dynamic magnifier. Acta Mech. 229, 4643–4662 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Sobhanirad, S., Afsharfard, A.: Improving application of galloping-based energy harvesters in realistic condition. Arch. Appl. Mech. 89(2), 313–328 (2019)

    Google Scholar 

  15. Keshmiri, A., Wu, N., Wang, Q.: A new nonlinearly tapered FGM piezoelectric energy harvester. Eng. Struct. 173, 52–60 (2018)

    Google Scholar 

  16. Qian, F., Xu, T.B., Zuo, L.: A distributed parameter model for the piezoelectric stack harvester subjected to general periodic and random excitations. Eng. Struct. 173, 191–202 (2018)

    Google Scholar 

  17. Tan, T., Yan, Z.M., Huang, W.H.: Broadband design of hybrid piezoelectric energy harvester. Int. J. Mech. Sci. 131–132, 516–526 (2017)

    Google Scholar 

  18. Gafforelli, G., Ardito, R., Corigliano, A.: Improved one-dimensional model of piezoelectric laminates for energy harvesters including three dimensional effects. Compos. Struct. 127, 369–381 (2015)

    Google Scholar 

  19. Cao, D.X., Gao, Y.H., Hu, W.H.: Modeling and power performance improvement of a piezoelectric energy harvester for lowfrequency vibration environments. Acta Mech. Sin. 35, 894–911 (2019)

    MathSciNet  Google Scholar 

  20. Tran, N., Ghayesh, M.H., Arjomandi, M.: Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement. Int. J. Eng. Sci. 127, 162–185 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Liu, H.C., Zhong, J.W., Lee, C., Lee, S.W., Lin, L.W.: A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Appl. Phys. Rev. 5, 041306 (2018)

    Google Scholar 

  22. Mahmoodi, S.N., Jalili, N.: Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers. Int. J. Non-Linear Mech. 42, 577–587 (2007)

    Google Scholar 

  23. Triplett, A., Quinn, D.D.: The effect of non-linear piezoelectric coupling on vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 20, 1959–1967 (2009)

    Google Scholar 

  24. Stanton, S.C., Erturk, A., Mann, B.P., Inman, D.J.: Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification. J. Appl. Phys. 108, 074903 (2010)

    Google Scholar 

  25. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation. Nonlinear Dyn. 67, 1221–1232 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Leadenham, S., Erturk, A.: Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing and actuation. Nonlinear Dyn. 79(3), 1727–1743 (2014)

    Google Scholar 

  27. Vijayan, K., Friswell, M.I., Khodaparast, H.H., Adhikari, S.: Non-linear energy harvesting from coupled impacting beams. Int. J. Mech. Sci. 96–97, 101–109 (2015)

    Google Scholar 

  28. Pasharavesh, A., Ahmadian, M.T., Zohoor, H.: Electromechanical modeling and analytical investigation of nonlinearities in energy harvesting piezoelectric beams. Int. J. Mech. Mater. Des. 13, 499–514 (2017)

    MATH  Google Scholar 

  29. Pasharavesh, A., Ahmadian, M.T.: Characterization of a nonlinear MEMS-based piezoelectric resonator for wideband micro power generation. Appl. Math. Model. 41, 121–142 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Firoozy, P., Khadem, S.E., Pourkiaee, S.M.: Power enhancement of broadband piezoelectric energy harvesting using a proof mass and nonlinearities in curvature and inertia. Int. J. Mech. Sci. 133, 227–239 (2017)

    Google Scholar 

  31. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009)

    Google Scholar 

  32. Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys. D 239, 640–653 (2010)

    MATH  Google Scholar 

  33. Ferrari, M., Ferrari, V., Guizzettia, M., Andò, B., Baglio, S., Trigona, C.: Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuators A 162, 425–431 (2010)

    Google Scholar 

  34. Panyam, M., Masana, R., Daqaq, M.F.: On approximating the effective bandwidth of bi-stable energy harvesters. Int. J. Non-Linear Mech. 67, 153–163 (2014)

    Google Scholar 

  35. Xu, M., Li, X.Y.: Stochastic averaging for bistable vibration energy harvesting system. Int. J. Mech. Sci. 141, 206–212 (2018)

    Google Scholar 

  36. Jung, J., Kim, P., Lee, J., Seok, J.: Nonlinear dynamic and energetic characteristics of piezoelectric energy harvester with two rotatable external magnets. Int. J. Mech. Sci. 92, 206–222 (2015)

    Google Scholar 

  37. Daqaq, M.F., Stabler, C., Qaroush, Y., Seuaciuc-Osorio, T.: Investigation of power harvesting via parametric excitations. J. Intell. Mater. Syst. Struct. 20(5), 545–557 (2009)

    Google Scholar 

  38. Jia, Y., Yan, J., Soga, K., Seshia, A.A.: Parametrically excited MEMS vibration energy harvesters with design approaches to overcome the initiation threshold amplitude. J. Micromech. Microeng. 23, 114007 (2013)

    Google Scholar 

  39. Jia, Y., Seshia, A.A.: An auto-parametrically excited vibration energy harvester. Sens. Actuators A 220, 69–75 (2014)

    Google Scholar 

  40. Jia, Y., Yan, J., Soga, K., Seshia, A.A.: A parametrically excited vibration energy harvester. J. Intell. Mater. Syst. Struct. 278, 278–289 (2014)

    Google Scholar 

  41. Jia, Y., Yan, J., Soga, K., Seshia, A.A.: Parametric resonance for vibration energy harvesting with design techniques to passively reduce the initiation threshold amplitude. Smart Mater. Struct. 23, 065011 (2014)

    Google Scholar 

  42. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67, 1147–1160 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Bitar, D., Kacem, N., Bouhaddi, N., Collet, M.: Collective dynamics of periodic nonlinear oscillators under simultaneous parametric and external excitations. Nonlinear Dyn. 82, 749–766 (2015)

    MathSciNet  Google Scholar 

  44. Yildirim, T., Ghayesh, M.H., Li, W., Alici, G.: Design and development of a parametrically excited nonlinear energy harvester. Energy Convers. Manag. 126, 247–255 (2016)

    Google Scholar 

  45. Alevras, P., Theodossiades, S., Rahnejat, H.: Broadband energy harvesting from parametric vibrations of a class of nonlinear Mathieu systems. Appl. Phys. Lett. 110, 233901 (2017)

    Google Scholar 

  46. Mam, K., Peigney, M., Siegert, D.: Finite strain effects in piezoelectric energy harvesters under direct and parametric excitations. J. Sound Vib. 389, 411–437 (2017)

    Google Scholar 

  47. Fang, F., Xia, G.H., Wang, J.G.: Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations. Acta Mech. Sin. 34, 561–577 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Xia, G.H., Fang, F., Zhang, M.X., Wang, Q., Wang, J.G.: Performance analysis of parametrically and directly excited nonlinear piezoelectric energy harvester. Arch. Appl. Mech. 89, 2147–2166 (2019)

    Google Scholar 

  49. Garg, A., Dwivedy, S.K.: Piezoelectric energy harvester under parametric excitation: a theoretical and experimental investigation. J. Intell. Mater. Syst. Struct. 31, 612–631 (2019)

    Google Scholar 

  50. Chiba, M., Shimazaki, N., Ichinohe, K.: Dynamic stability of a slender beam under horizontal-vertical excitations. J. Sound Vib. 333, 1442–1472 (2014)

    Google Scholar 

  51. Erturk, A., Tarazaga, P.A., Farmer, J.R., Inman, D.J.: Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered Beams. J. Vib. Acoust. 131(1), 011010 (2009)

    Google Scholar 

  52. Lee, S., Youn, B.D., Jung, B.C.: Robust segment-type energy harvester and its application to a wireless sensor. Smart Mater. Struct. 18(9), 095021 (2009)

    Google Scholar 

  53. HaQuang, N., Mook, T., Plaut, R.H.: A non-linear analysis of the interactions between parametric and external excitations. J. Sound Vib. 118(3), 425–439 (1987)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of PR China (No. 11172087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The coefficients of Eqs. (22) and (23) are defined as:

$$\begin{aligned} a_{1n} \left( {\bar{{s}}} \right)= & {} \int _{\bar{{s}}}^1 {\int _0^{\bar{{\xi }}} {{X'}^{2}_{n} \left( {\bar{{\eta }}} \right) \mathrm{d}\bar{{\eta }}\mathrm{d}\bar{{\xi }}} } ,a_{2n} \left( {\bar{{s}}} \right) =\int _0^{\bar{{s}}} {{X'}^{2}_{n} \left( {\bar{{\eta }}} \right) \mathrm{d}\bar{{\eta }}} ,b_{1nn} =\int _0^1 {X_{n} X_{n} \mathrm{d}\bar{{s}}} \nonumber \\ b_{2nn}= & {} \int _0^1 {{X}''_{n} X_{n} \mathrm{d}\bar{{s}}} -\int _0^1 {\bar{{s}}{X}''_{n} X_{n} \mathrm{d}\bar{{s}}} -\int _0^1 {{X}'_{n} X_{n} \mathrm{d}\bar{{s}}} -\bar{{M}}{X}'_{n} (1)X_{n} (1) \nonumber \\ b_{3nn}= & {} \int _0^1 {\left( {\bar{{\beta }}_{n}^{4} {X'}^{2}_{n} X_{n} +4{X}'_{n} {X}''_{n} {X}'''_{n} +{X''}^{3}_{n}} \right) X_{n} \mathrm{d}\bar{{s}}} \nonumber \\ b_{4nn}= & {} \int _0^1 {a_{2n} \left( {\bar{{s}}} \right) {X}'_{n} X_{n} \mathrm{d}\bar{{s}}} -\int _0^1 {a_{1n} \left( {\bar{{s}}} \right) {X}''_{n} X_{n}\mathrm{d}\bar{{s}}} ,b_{5nn} =\bar{{\alpha }}{X}'_{n} \left( 1 \right) \nonumber \\ b_{6nn}= & {} \bar{{\alpha }}{X'}^{3}_{n} \left( 1 \right) ,b_{7nn} =\int _0^1 {X_{n} \mathrm{d}\bar{{s}}} +\bar{{M}}X_{n} (1),b_{8nn} =\bar{{\alpha }}\int _0^1{{X}''_{n} \mathrm{d}\bar{{s}}} \nonumber \\ b_{9nn}= & {} \bar{{\alpha }}\int _0^1 {{X'}^{2}_{n} {X}''_{n} \mathrm{d}\bar{{s}}} ,b_{10nn} =\int _0^1 {X_{n}^{2} } \left| {X_{n} } \right| \mathrm{d}\bar{{s}}\nonumber \\ \tilde{{c}}_{a}= & {} \frac{1}{2}\bar{{c}}_{a} ,\quad \tilde{{c}}_{q} =\bar{{c}}_{q} b_{10nn} , \bar{{\omega }}_{n}^{2} =\bar{{\beta }}_{n}^{4} , \bar{{\sigma }}_{n} =\frac{1}{2}\frac{b_{2nn} }{b_{1nn} }, \beta _{n} =\frac{b_{3nn} }{b_{1nn} }, \kappa _{n} =\frac{b_{4nn} }{b_{1nn} }\nonumber \\ \zeta _{n}= & {} \frac{b_{5nn} }{b_{1nn} }, \gamma _{n} =\frac{b_{6nn} }{2b_{1nn} }, \bar{{\lambda }}_{n} =\frac{b_{7nn} }{b_{1nn} }, \eta _{n} =b_{8nn} , \chi _{n} =\frac{3}{2}b_{9nn} \end{aligned}$$
(A1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, G., Fang, F., Wang, Q. et al. Performance analysis of piezoelectric energy harvesters with a tip mass and nonlinearities of geometry and damping under parametric and external excitations. Arch Appl Mech 90, 2297–2318 (2020). https://doi.org/10.1007/s00419-020-01721-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01721-3

Keywords

Navigation