Skip to main content
Log in

In Silico Identification of miRNA and Targets from Chrysopogon zizanioides (L.) Roberty with Functional Validation from Leaf and Root Tissues

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

microRNAs are small non-coding RNA molecule that plays an important role in metabolism. Chrysopogon zizanioides (L.) Roberty is an important aromatic plant used in perfumery industries, soil, water conservation, and agricultural practices. In this study, the transcriptomic sequence of vetiver leaf and root was subjected to miRNA identification by the computational methods. miRNA identification was carried out using a homology-based method by C-mii software with several other online tools. A total of 80 miRNA were identified from both leaf and root sequences. Target identification was done by identified miRNA sets. A total of 25 and 31 miRNA families were identified in both leaf and root, respectively, with ten common families involve in different ontological function. miR169 and miR5021 regulate most of the target in leaf and root. In vetiver, many primary and secondary metabolism elements are regulated by miRNA as photo-system, transcription factor, terpenoid metabolism, etc. Here is the first in silico study revealing the specific miRNAs and their target genes for corresponding root and leaf tissues respectively in C. zizanioides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams, R. P., Turuspekov, M. Z. Y., Dafforn, M. R., & Veldkamp, J. F. (1998). DNA fingerprinting reveals clonal nature of Vetiveria zizanioides (L.) Nash, Gramineae and sources of potential new germplasm. Molecular Ecology, 7(7), 813–818. https://doi.org/10.1046/j.1365-294x.1998.00394.x.

    Article  Google Scholar 

  2. Lal, R. K., Gupta, P., Gupta, V., Sarkar, S., & Singh, S. (2013). Genetic variability and character associations in vetiver (Vetiveria zizanioides L. Nash). Industrial Crops and Products, 49, 273–277. https://doi.org/10.1016/j.indcrop.2013.05.005.

    Article  Google Scholar 

  3. Burger, P., Landreau, A., Watson, M., Janci, L., Cassisa, V., Kempf, M., Azoulay, S., & Fernandez, X. (2017). Vetiver Essential Oil in Cosmetics: What Is New? Medicines, 4(2). https://doi.org/10.3390/medicines4020041.

  4. Lal, R. K., Chanotiya, C., Dhawan S.S,, Gupta P., & Sarkar S. (2018) Genotypic and morphological appearance of the traits in relation to genetic diversity of essential oil yield in vetiver grass (Chrysopogon zizanioides Roberty) Acta Scientific Agriculture (pp 62-72) (ISSN: 2581-365X)

  5. Raman, J. K., & Gnansounou, E. (2018). A Review on Bioremediation Potential of Vetiver Grass. In S. J. Varjani, E. Gnansounou, B. Gurunathan, D. Pant, & Z. A. Zakaria (Eds.), Waste Bioremediation (pp. 127–140). Singapore: Springer. https://doi.org/10.1007/978-981-10-7413-4_6.

    Chapter  Google Scholar 

  6. Lal, R. K., Maurya, R., Chanotiya, C., Gupta, P., Mishra, A., Srivastava, S., et al. (2020). On carbon sequestration efficient clones/genotypes selection for high essential oil yield over environments in Khus (Chrysopogon zizanioides (L.) Roberty). Industrial Crops and Products, 145, 112139. https://doi.org/10.1016/j.indcrop.2020.112139.

    Article  CAS  Google Scholar 

  7. Alifano, P., Giudice, L. D., Talà, A., Stefano, M. D., & Maffei, M. E. (2010). Microbes at work in perfumery: the microbial community of vetiver root and its involvement in essential oil biogenesis. Flavour and Fragrance Journal, 25(3), 121–122. https://doi.org/10.1002/ffj.1978.

    Article  CAS  Google Scholar 

  8. Del Giudice, L., Massardo, D. R., Pontieri, P., Bertea, C. M., Mombello, D., Carata, E., & Alifano, P. (2008). The microbial community of Vetiver root and its involvement into essential oil biogenesis. Environmental Microbiology, 10(10), 2824–2841. https://doi.org/10.1111/j.1462-2920.2008.01703.x.

    Article  CAS  PubMed  Google Scholar 

  9. Chakrabarty, D., Chauhan, P. S., Chauhan, A. S., Indoliya, Y., Lavania, U. C., & Nautiyal, C. S. (2015). De novo assembly and characterization of root transcriptome in two distinct morphotypes of vetiver, Chrysopogon zizaniodes (L.) Roberty. Scientific Reports, 5, 18630. https://doi.org/10.1038/srep18630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Croteau, R. B., Davis, E. M., Ringer, K. L., & Wildung, M. R. (2005). (-)-Menthol biosynthesis and molecular genetics. Die Naturwissenschaften, 92(12), 562–577. https://doi.org/10.1007/s00114-005-0055-0.

    Article  CAS  PubMed  Google Scholar 

  11. Gutensohn, M., Nagegowda, D. A., & Dudareva, N. (2013). Involvement of compartmentalization in monoterpene and sesquiterpene biosynthesis in plants. In T. J. Bach & M. Rohmer (Eds.), Isoprenoid Synthesis in Plants and Microorganisms: New Concepts and Experimental Approaches (pp. 155–169). New York: Springer. https://doi.org/10.1007/978-1-4614-4063-5_11.

    Chapter  Google Scholar 

  12. Xu, L., Hu, Y., Cao, Y., Li, J., Ma, L., Li, Y., & Qi, Y. (2018). An expression atlas of miRNAs in Arabidopsis thaliana. Science China. Life Sciences, 61(2), 178–189. https://doi.org/10.1007/s11427-017-9199-1.

    Article  CAS  PubMed  Google Scholar 

  13. Sunkar, R., Girke, T., Jain, P. K., & Zhu, J.-K. (2005). Cloning and characterization of microRNAs from rice. The Plant Cell, 17(5), 1397–1411. https://doi.org/10.1105/tpc.105.031682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jaiswal, S., Iquebal, M. A., Arora, V., Sheoran, S., Sharma, P., Angadi, U. B., Dahiya, V., Singh, R., Tiwari, R., Singh, G. P., Rai, A., & Kumar, D. (2019). Development of species specific putative miRNA and its target prediction tool in wheat ( Triticum aestivum L.). Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-40333-y.

    Article  CAS  Google Scholar 

  15. Jagadeeswaran, G., Zheng, Y., Li, Y.-F., Shukla, L. I., Matts, J., Hoyt, P., Macmil, S. L., Wiley, G. B., Roe, B. A., Zhang, W., & Sunkar, R. (2009). Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families. The New Phytologist, 184(1), 85–98. https://doi.org/10.1111/j.1469-8137.2009.02915.x.

    Article  CAS  PubMed  Google Scholar 

  16. Singh, N., & Sharma, A. (2014). In-silico identification of miRNAs and their regulating target functions in Ocimum basilicum. Gene, 552(2), 277–282. https://doi.org/10.1016/j.gene.2014.09.040.

    Article  CAS  PubMed  Google Scholar 

  17. Singh, N., Srivastava, S., Shasany, A. K., & Sharma, A. (2016). Identification of miRNAs and their targets involved in the secondary metabolic pathways of Mentha spp. Computational Biology and Chemistry, 64, 154–162. https://doi.org/10.1016/j.compbiolchem.2016.06.004.

    Article  CAS  PubMed  Google Scholar 

  18. George, S., Manoharan, D., Li, J., Britton, M., & Parida, A. (2017). Drought and salt stress in Chrysopogon zizanioides leads to common and specific transcriptomic responses and may affect essential oil composition and benzylisoquinoline alkaloids metabolism. Current Plant Biology, 11–12, 12–22. https://doi.org/10.1016/j.cpb.2017.12.001.

    Article  Google Scholar 

  19. Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., & Regev, A. (2011). Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Numnark, S., Mhuantong, W., Ingsriswang, S., & Wichadakul, D. (2012). C-mii: a tool for plant miRNA and target identification. BMC Genomics, 13(7), S16. https://doi.org/10.1186/1471-2164-13-S7-S16.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu, B., Fang, L., Chen, J., Liu, F., & Wang, X. (2015). miRNA-dis: microRNA precursor identification based on distance structure status pairs. Molecular bioSystems, 11(4), 1194–1204. https://doi.org/10.1039/c5mb00050e.

    Article  CAS  PubMed  Google Scholar 

  22. Mishra, A., Lal, R. K., Chanotiya, C., & Dhawan, S. S. (2016). Genetic elaborations of glandular and non-glandular trichomes in Mentha arvensis genotypes: assessing genotypic and phenotypic correlations along with gene expressions. Protoplasma, 254(2), 1045–1061. https://doi.org/10.1007/s00709-016-1011-x.

    Article  CAS  PubMed  Google Scholar 

  23. Pani, A., Mahapatra, R. K., Behera, N., & Naik, P. K. (2011). Computational Identification of Sweet Wormwood (Artemisia annua) microRNA and Their mRNA Targets. Genomics, Proteomics & Bioinformatics, 9(6), 200. https://doi.org/10.1016/S1672-0229(11)60023-5.

    Article  CAS  Google Scholar 

  24. Wei, L. Q., Yan, L. F., & Wang, T. (2011). Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biology, 12(6), R53. https://doi.org/10.1186/gb-2011-12-6-r53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, X.-J., Reyes, J. L., Chua, N.-H., & Gaasterland, T. (2004). Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biology, 5(9), R65. https://doi.org/10.1186/gb-2004-5-9-r65.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kozomara, A., Birgaoanu, M., & Griffiths-Jones, S. (2019). miRBase: from microRNA sequences to function. Nucleic Acids Research, 47(D1), D155–D162. https://doi.org/10.1093/nar/gky1141.

    Article  CAS  PubMed  Google Scholar 

  27. Gomes, C. P. C., Cho, J.-H., Hood, L., Franco, O. L., Pereira, R. W., & Wang, K. (2013). A Review of Computational Tools in microRNA Discovery. Frontiers in Genetics, 4. https://doi.org/10.3389/fgene.2013.00081.

  28. Zhang, F., & Wang, D. (2017). The pattern of microRNA binding site distribution. Genes, 8(11). https://doi.org/10.3390/genes8110296.

  29. Wahid, F., Shehzad, A., Khan, T., & Kim, Y. Y. (2010). MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1803(11), 1231–1243. https://doi.org/10.1016/j.bbamcr.2010.06.013.

    Article  CAS  Google Scholar 

  30. UniProt Consortium. (2019). UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515. https://doi.org/10.1093/nar/gky1049.

    Article  CAS  Google Scholar 

  31. Markham, N. R., & Zuker, M. (2008). UNAFold: software for nucleic acid folding and hybridization. Methods in Molecular Biology (Clifton, N.J.), 453, 3–31. https://doi.org/10.1007/978-1-60327-429-6_1.

    Article  CAS  Google Scholar 

  32. Akter, A., Islam, M. M., Mondal, S. I., Mahmud, Z., Jewel, N. A., Ferdous, S., Amin, M. R., & Rahman, M. M. (2014). Computational identification of miRNA and targets from expressed sequence tags of coffee (Coffea arabica). Saudi Journal of Biological Sciences, 21(1), 3–12. https://doi.org/10.1016/j.sjbs.2013.04.007.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao, S., Gordon, W., Du, S., Zhang, C., He, W., Xi, L., et al. (2017). QuickMIRSeq: a pipeline for quick and accurate quantification of both known miRNAs and isomiRs by jointly processing multiple samples from microRNA sequencing. BMC Bioinformatics, 18(1), 180. https://doi.org/10.1186/s12859-017-1601-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koonin, E. V., & Galperin, M. Y. (2003). Principles and methods of sequence analysis. Kluwer Academic. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK20261/

  35. Ahmed, F., Ansari, H. R., & Raghava, G. P. (2009). Prediction of guide strand of microRNAs from its sequence and secondary structure. BMC Bioinformatics, 10(1), 105. https://doi.org/10.1186/1471-2105-10-105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Samad, A. F. A., Rahnamaie-Tajadod, R., Sajad, M., Jani, J., Murad, A. M. A., Noor, N. M., & Ismail, I. (2019). Regulation of terpenoid biosynthesis by miRNA in Persicaria minor induced by Fusarium oxysporum. BMC Genomics, 20(1). https://doi.org/10.1186/s12864-019-5954-0.

  37. Srivastava, S., Sanchita, S. R., Srivastava, G., & Sharma, A. (2018). Comparative study of withanolide biosynthesis-related miRNAs in root and leaf tissues of Withania somnifera. Applied Biochemistry and Biotechnology, 185(4), 1145–1159. https://doi.org/10.1007/s12010-018-2702-x.

    Article  CAS  PubMed  Google Scholar 

  38. Gasparis, S., Yanushevska, Y., & Nadolska-Orczyk, A. (2017). Bioinformatic identification and expression analysis of new microRNAs from wheat (Triticum aestivum L.). Acta Physiologiae Plantarum, 39(10), 236. https://doi.org/10.1007/s11738-017-2530-6.

    Article  CAS  Google Scholar 

  39. Gao, R., Wang, Y., Gruber, M. Y., & Hannoufa, A. (2018). miR156/SPL10 modulates lateral root development, branching and leaf morphology in arabidopsis by silencing AGAMOUS-LIKE 79. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.02226.

  40. Sánchez-Gutiérrez, A., Ovando-Medina, I., Adriano-Anaya, L., Vázquez-Ovando, A., Salvador-Figueroa, M., Sánchez-Gutiérrez, A., et al. (2018). Dynamics of miR156 and miR172 involved in the flowering of Jatropha curcas L. Acta Botanica Brasilica, 32(1), 99–106. https://doi.org/10.1590/0102-33062017abb0179.

    Article  Google Scholar 

  41. Preston, J. C., & Hileman, L. (2013). Functional Evolution in the Plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Family. Frontiers in Plant Science, 4. https://doi.org/10.3389/fpls.2013.00080.

  42. Xu, M., Hu, T., Zhao, J., Park, M.-Y., Earley, K. W., Wu, G., Yang, L., & Poethig, R. S. (2016). Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana. PLoS genetics, 12(8), e1006263. https://doi.org/10.1371/journal.pgen.1006263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bajsa, J., Pan, Z., & Duke, S. O. (2011). Serine/threonine protein phosphatases. Plant Signaling & Behavior, 6(12), 1921–1925. https://doi.org/10.4161/psb.6.12.18146.

    Article  CAS  Google Scholar 

  44. Chahal, K. K., Bhardwaj, U., Kaushal, S., & Sandhu, A. K. (2015). Chemical composition and biological properties of Chrysopogon zizanioides (L.) Roberty syn. Vetiveria zizanioides (L.) Nash- A Review, 10.

  45. Filippi, J.-J., Belhassen, E., Baldovini, N., Brevard, H., & Meierhenrich, U. J. (2013). Qualitative and quantitative analysis of vetiver essential oils by comprehensive two-dimensional gas chromatography and comprehensive two-dimensional gas chromatography/mass spectrometry. Journal of Chromatography A, 1288, 127–148. https://doi.org/10.1016/j.chroma.2013.03.002.

    Article  CAS  PubMed  Google Scholar 

  46. Fan, R., Li, Y., Li, C., & Zhang, Y. (2015). Differential microRNA analysis of glandular trichomes and young leaves in Xanthium strumarium L. Reveals Their Putative Roles in Regulating Terpenoid Biosynthesis. PLOS ONE, 10(9), e0139002. https://doi.org/10.1371/journal.pone.0139002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, J.-P., Yu, Y., Feng, Y.-Z., Zhou, Y.-F., Zhang, F., Yang, Y.-W., Lei, M. Q., Zhang, Y. C., & Chen, Y.-Q. (2017). MiR408 Regulates Grain Yield and Photosynthesis via a Phytocyanin Protein1. Plant Physiology, 175(3), 1175–1185. https://doi.org/10.1104/pp.17.01169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Djami-Tchatchou, A. T., Sanan-Mishra, N., Ntushelo, K., & Dubery, I. A. (2017). Functional roles of microRNAs in agronomically important plants—potential as targets for crop improvement and protection. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.00378.

Download references

Funding

The authors are thankful for the support and facilities provided by the Director, CSIR-CIMAP, UP, Lucknow, India. This research work is supported by the Council of Scientific and Industrial Research, India, under CSR-Emeritus Scientist Scheme funding via Sanction No. 21 (1020)/16/EMR-II dated 18-11-2016. Anand Mishra acknowledges the CSIR-Research associate fellowship and the funds granted from CSIR, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

AM was involved in planning, actual experimentation, and statistical analyses; S helped in in silico analysis; PG helped in data collection; SSD helped in data analysis; and RKL was involved in manuscript preparation

Corresponding author

Correspondence to Anand Mishra.

Ethics declarations

Conflict of interest

There authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 1916 kb)

ESM 2

(XLSX 1184 kb)

ESM 3

(XLSX 521 kb)

ESM 4

(PPTX 4030 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Gupta, S., Gupta, P. et al. In Silico Identification of miRNA and Targets from Chrysopogon zizanioides (L.) Roberty with Functional Validation from Leaf and Root Tissues. Appl Biochem Biotechnol 192, 1076–1092 (2020). https://doi.org/10.1007/s12010-020-03381-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03381-z

Keywords

Navigation