Skip to main content
Log in

Hermitian curvature flow on complex locally homogeneous surfaces

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We study the Hermitian curvature flow of locally homogeneous non-Kähler metrics on compact complex surfaces. In particular, we characterize the long-time behavior of the solutions to the flow. We also provide the first example of a compact complex non-Kähler manifold admitting a finite time singularity for the Hermitian curvature flow. Finally, we compute the Gromov–Hausdorff limit of immortal solutions after a suitable normalization. Our results follow by a case-by-case analysis of the flow on each complex model geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Angella, D., Sferruzza, T.: Geometric formalities along the Chern–Ricci flow. Complex Anal. Oper. Theory 14(1), 27 (2020)

    Article  MathSciNet  Google Scholar 

  2. Arroyo, R., Lafuente, R.: The long-time behaviour of the homogeneous pluriclosed flow. Proc. Lond. Math. Soc. 119(1), 266–289 (2019)

    Article  MathSciNet  Google Scholar 

  3. Boling, J.: Homogeneous solutions of pluriclosed flow on closed complex surfaces. J. Geom. Anal. 26(3), 2130–2154 (2016)

    Article  MathSciNet  Google Scholar 

  4. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. American Mathematical Society, Providence (2001)

    Book  Google Scholar 

  5. Chen, X.X., Tian, G.: Ricci flow on Kähler–Einstein surfaces. Invent. Math. 147, 487–544 (2002)

    Article  MathSciNet  Google Scholar 

  6. Enrietti, N., Fino, A., Vezzoni, L.: The pluriclosed flow on nilmanifolds and Tamed symplectic forms. J. Geom. Anal. 25(2), 883–909 (2015)

    Article  MathSciNet  Google Scholar 

  7. Fang, S., Tosatti, V., Weinkove, B., Zheng, T.: Inoue surfaces and the Chern–Ricci flow. J. Funct. Anal. 271(11), 3162–3185 (2016)

    Article  MathSciNet  Google Scholar 

  8. Inoue, M.: On surfaces of class \(VII_0\). Invent. Math. 24, 269–310 (1974)

    Article  MathSciNet  Google Scholar 

  9. Lafuente, R., Pujia, M., Vezzoni, L.: Hermitian curvature flow on unimodular Lie groups and static invariant metrics. Trans. Am. Math. Soc. 363(6), 3967–3993 (2020)

    Article  MathSciNet  Google Scholar 

  10. Lott, J.: On the long-time behavior of type-III Ricci flow solutions. Math. Ann. 339, 627–666 (2007)

    Article  MathSciNet  Google Scholar 

  11. Panelli, F., Podestà, F.: Hermitian curvature flow on compact homogeneous spaces. J. Geom. Anal. (2019). https://doi.org/10.1007/s12220-019-00239-7

    Article  MATH  Google Scholar 

  12. Pujia, M.: Expanding solitons to the Hermitian curvature flow on complex Lie groups. Differ. Geom. Appl. 64, 201–216 (2019)

    Article  MathSciNet  Google Scholar 

  13. Pujia, M.: Positive Hermitian curvature flow on complex 2-step nilpotent Lie groups. arXiv:2002.07210

  14. Pujia, M., Vezzoni, L.: A remark on the Bismut–Ricci form on 2-step nilmanifolds. C. R. Math. Acad. Sci. Paris 356, 222–226 (2018)

    Article  MathSciNet  Google Scholar 

  15. Rong, X.: Convergence and collapsing theorems in Riemannian geometry. In: Handbook of Geometric Analysis, No. 2, Advanced Lectures in Mathematics, Int. Press, Somerville, pp. 193–299 (2010)

  16. Singer, I.M.: Infinitesimally homogeneous spaces. Commun. Pure Appl. Math. 13, 685–697 (1960)

    Article  MathSciNet  Google Scholar 

  17. Song, J., Tian, G.: The Kähler–Ricci flow on surfaces of positive Kodaira dimension. Invent. math. 170, 609–653 (2007)

    Article  MathSciNet  Google Scholar 

  18. Streets, J.: Pluriclosed flow on manifolds with globally generated bundles. In: Complex Manifolds, vol. 3, no. 1 (2016)

  19. Streets, J.: Classification of solitons for pluriclosed flow on complex surfaces. Math. Ann 375, 1555–1595 (2019)

    Article  MathSciNet  Google Scholar 

  20. Streets, J.: Pluriclosed flow and the geometrization of complex surfaces. arXiv:1808.09490

  21. Streets, J., Tian, G.: A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. IMRN 16, 3101–3133 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Streets, J., Tian, G.: Hermitian curvature flow. J. Eur. Math. Soc. (JEMS) 13(3), 601–634 (2011)

    Article  MathSciNet  Google Scholar 

  23. Streets, J., Tian, G.: Regularity results for the pluriclosed flow. Geom. Top. 17, 2389–2429 (2013)

    Article  MathSciNet  Google Scholar 

  24. Tian, G., Zhang, Z.: On the Kähler–Ricci flow on projective manifolds of general type. Chin. Ann. Math. 27B(2), 179–192 (2006)

    Article  Google Scholar 

  25. Tosatti, V., Weinkove, B.: On the evolution of a Hermitian metric by its Chern–Ricci form. J. Differ. Geom. 99, 125–163 (2015)

    Article  MathSciNet  Google Scholar 

  26. Tosatti, V., Weinkove, B.: The Chern–Ricci flow on complex surfaces. Compos. Math. 149, 2101–2138 (2013)

    Article  MathSciNet  Google Scholar 

  27. Tosatti, V., Weinkove, B., Yang, X.: Collapsing of the Chern–Ricci flow on elliptic surfaces. Math. Ann. 362(3–4), 1223–1271 (2015)

    Article  MathSciNet  Google Scholar 

  28. Ustinovskiy, Y.: Hermitian curvature flow on manifolds with non-negative Griffiths curvature. Am. J. Math. 141(6), 1751–1775 (2019)

    Article  MathSciNet  Google Scholar 

  29. Ustinovskiy, Y.: Hermitian curvature flow on complex homogeneous manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2019). https://doi.org/10.2422/2036-2145.201903_011

    Article  MATH  Google Scholar 

  30. Wall, CTC.: Geometries and geometric structures in real dimension 4 and complex dimension 2. In: Geometry and Topology (College Park, Md., 1983/84), Lecture Notes in Mathematics, vol. 1167, Springer, Berlin, pp. 268–292 (1985)

  31. Wall, C.T.C.: Geometric structures on compact complex analytic surfaces. Topology 25, 119–153 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We warmly thank Daniele Angella, Alberto Raffero and Luigi Vezzoni for their interest and helpful comments. We also thank the anonymous referee for his/her useful suggestions, which improved the presentation of the paper.

Funding

This work was supported by G.N.S.A.G.A. of I.N.d.A.M. The first named author was supported by project PRIN 2017 “Real and Complex Manifolds: Topology, Geometry and holomorphic dynamics” (code 2017JZ2SW5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Pujia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this “Appendix”, we explicitly write down the tensors S and \(Q^i\) used in Sect. 3 to obtain the HCF tensor K. We assume G to be one of the (non-abelian) Lie groups listed in Sect. 3, equipped with a left-invariant Hermitian structure (Jg) as in (6). Our results directly follow by the formulas given in Sect. 2 and the structure equations of G.

1.1 Hyperelliptic surfaces

$$\begin{aligned} \begin{aligned} S_{1{\bar{1}}}&=\tfrac{x^2|z|^2}{(xy-|z|^2)^2}, \qquad&S_{2{\bar{2}}}&=\tfrac{xy|z|^2}{(xy-|z|^2)^2}, \qquad&S_{1{\bar{2}}}&=\tfrac{x^2yz}{(xy-|z|^2)^2},\\ Q^1_{1{\bar{1}}}&=\tfrac{x^2|z|^2}{(xy-|z|^2)^2}, \qquad&Q^1_{2{\bar{2}}}&=\tfrac{xy|z|^2}{(xy-|z|^2)^2}, \qquad&Q^1_{1{\bar{2}}}&=\tfrac{xz|z|^2}{(xy-|z|^2)^2},\\ Q^2_{1{\bar{1}}}&=0, \qquad&Q^2_{2{\bar{2}}}&=\tfrac{2|z|^2}{xy-|z|^2}, \qquad&Q^2_{1{\bar{2}}}&=0,\\ Q^3_{1{\bar{1}}}&=\tfrac{x^2|z|^2}{(xy-|z|^2)^2}, \qquad&Q^3_{2{\bar{2}}}&=\tfrac{|z|^4}{(xy-|z|^2)^2}, \qquad&Q^3_{1{\bar{2}}}&=\tfrac{xz|z|^2}{(xy-|z|^2)^2},\\ Q^4_{1{\bar{1}}}&=0, \qquad&Q^4_{2\bar{2}}&=\tfrac{|z|^2}{xy-|z|^2}, \qquad&Q^4_{1{\bar{2}}}&=0. \end{aligned} \end{aligned}$$

1.2 Hopf surfaces

$$\begin{aligned} \begin{aligned} S_{1{\bar{1}}}&=\tfrac{x (x^3(1+\lambda ^2)+|z|^2(2x+y) )}{(xy-|z|^2)^2},\\ S_{2{\bar{2}}}&=\tfrac{-(1+\lambda ^2)x^2(xy-2|z|^2)-4|z|^2(xy-|z|^2)+y^2(2x^2+|z|^2)}{(xy-|z|^2)^2},\\ S_{1{\bar{2}}}&=\tfrac{xz (-i\lambda (xy-|z|^2)+x^2(1+\lambda ^2)+y(x+y)+|z|^2 )}{(xy-|z|^2)^2},\\ Q^1_{1{\bar{1}}}&=\tfrac{x ((1+\lambda ^2)x^3(xy-|z|^2)^2+y|z|^2(x^2y^2-|z|^4)+(x+y)(xy-2|z|^2)|z|^4+2x^2y(xy-|z|^2) )}{(xy-|z|^2)^4},\\ Q^1_{2{\bar{2}}}&=\tfrac{y ((1+\lambda ^2)x^3(xy-|z|^2)^2+y|z|^2(x^2y^2-|z|^4)+(x+y)(xy-2|z|^2)|z|^4+2x^2y(xy-|z|^2) )}{(xy-|z|^2)^4},\\ Q^1_{1{\bar{2}}}&=\tfrac{z ((1+\lambda ^2)x^3+(2x+y)|z|^2 )}{(xy-|z|^2)^2},\\ Q^2_{1{\bar{1}}}&=\tfrac{2|z|^2}{xy-|z|^2},\\ Q^2_{2{\bar{2}}}&=\tfrac{2(1+\lambda ^2)x^2}{xy-|z|^2},\\ Q^2_{1{\bar{2}}}&=\tfrac{-2xy(1+i\lambda )}{xy-|z|^2},\\ Q^3_{1{\bar{1}}}&=\tfrac{(1+\lambda ^2)x^4+(2x^2+|z|^2)|z|^2}{(xy-|z|^2)^2},\\ Q^3_{2{\bar{2}}}&=\tfrac{(1+\lambda ^2)x^2+(2x+y)y|z|^2}{(xy-|z|^2)^2},\\ Q^3_{1{\bar{2}}}&=\tfrac{z ((1+\lambda ^2)x^3+i\lambda x+(x+y)|z|^2+x^2y )}{(xy-|z|^2)^2},\\ Q^4_{1{\bar{1}}}&=\tfrac{|z|^2}{xy-|z|^2},\\ Q^4_{2{\bar{2}}}&=\tfrac{(1+\lambda ^2)x^2}{xy-|z|^2},\\ Q^4_{1{\bar{2}}}&=\tfrac{-(1+i\lambda )xz}{xy-|z|^2}. \end{aligned} \end{aligned}$$

Here, \(\lambda \in {\mathbb R}\) denotes the parameter of the family of complex structures related to Hopf surfaces.

1.3 Non-Kähler properly elliptic surfaces

$$\begin{aligned} \begin{aligned} S_{1{\bar{1}}}&= \tfrac{-y (2x+(1+\lambda ^2)y )(xy-|z|^2)+ ((x+y)^2+a^2y^2-4 )|z|^2}{(xy-|z|^2)^2},\\ S_{2{\bar{2}}}&= \tfrac{y ((1+\lambda ^2)y^3+(x-2y)|z|^2 )}{(xy-|z|^2)^2}, \\ S_{1{\bar{2}}}&= \tfrac{yz ((1+i\lambda )(xy-|z|^2)+x^2-2xy+(1+\lambda ^2)y^2 )}{(xy-|z|^2)^2},\\ Q^1_{1{\bar{1}}}&= \tfrac{x ((1+\lambda ^2)y^3+(x-2y)|z|^2 )}{(xy-|z|^2)^2}, \\ Q^1_{2{\bar{2}}}&= \tfrac{y ((1+\lambda ^2)y^3+(x-2y)|z|^2 )}{(xy-|z|^2)^2}, \\ Q^1_{1{\bar{2}}}&= \tfrac{z ((1+\lambda ^2)y^3+(x-2y)|z|^2 )}{(xy-|z|^2)^2}, \\ Q^2_{1{\bar{1}}}&= \tfrac{2y^2(1+\lambda ^2)}{xy-|z|^2}, \\ Q^2_{2{\bar{2}}}&= \tfrac{2|z|^2}{xy-|z|^2},\\ Q^2_{1{\bar{2}}}&= \tfrac{2(1+i\lambda )yz}{xy-|z|^2}, \\ Q^3_{1{\bar{1}}}&= \tfrac{ ((1+\lambda ^2)y^2+x(x-2y) )|z|^2}{(xy-|z|^2)^2}, \\ Q^3_{2{\bar{2}}}&= \tfrac{(1+\lambda ^2)y^4+|z|^2(|z|^2 -2y^2)}{(xy-|z|^2)^2},\\ Q^3_{1{\bar{2}}}&= \tfrac{z ((1-i\lambda )y(xy-|z|^2) +(1+\lambda ^2)y^3 +x|z|^2 )}{(xy-|z|^2)^2},\\ Q^4_{1{\bar{1}}}&= \tfrac{y^2(1+\lambda ^2)}{xy-|z|^2}, \\ Q^4_{2{\bar{2}}}&= \tfrac{|z|^2}{xy-|z|^2}, \\ Q^4_{1{\bar{2}}}&= \tfrac{1+i\lambda }{xy-|z|^2}.\\ \end{aligned} \end{aligned}$$

Here, \(\lambda \in {\mathbb R}\) denotes the parameter of the family of complex structures related to non-Kähler properly elliptic surfaces.

1.4 Primary Kodaira surfaces

$$\begin{aligned} \begin{aligned} S_{1{\bar{1}}}&=\tfrac{-y^2(xy-2|z|^2)}{(xy-|z|^2)^2}, \qquad&S_{2{\bar{2}}}&=\tfrac{y^4}{(xy-|z|^2)^2}, \qquad&S_{1{\bar{2}}}&=\tfrac{y^3z}{(xy-|z|^2)^2},\\ Q^1_{1{\bar{1}}}&=\tfrac{xy^3}{(xy-|z|^2)^2}, \qquad&Q^1_{2{\bar{2}}}&=\tfrac{y^4}{(xy-|z|^2)^2}, \qquad&Q^1_{1{\bar{2}}}&=\tfrac{y^3z}{(xy-|z|^2)^2},\\ Q^2_{1{\bar{1}}}&= \tfrac{2y^2}{xy-|z|^2}, \qquad&Q^2_{2{\bar{2}}}&=0, \qquad&Q^2_{1{\bar{2}}}&=0,\\ Q^3_{1{\bar{1}}}&=\tfrac{y^2|z|^2}{(xy-|z|^2)^2}, \qquad&Q^3_{2{\bar{2}}}&=\tfrac{y^4}{(xy-|z|^2)^2}, \qquad&Q^3_{1{\bar{2}}}&=\tfrac{y^3z}{(xy-|z|^2)^2},\\ Q^4_{1{\bar{1}}}&=\tfrac{y^2}{xy-|z|^2}, \qquad&Q^4_{2\bar{2}}&=0, \qquad&Q^4_{1{\bar{2}}}&=0. \end{aligned} \end{aligned}$$

1.5 Secondary Kodaira surfaces

$$\begin{aligned} \begin{aligned} S_{1{\bar{1}}}&=\tfrac{(x^2+y^2)|z|^2-y^2(xy-|z|^2)}{(xy-|z|^2)^2} , \qquad&S_{2{\bar{2}}}&=\tfrac{y(x|z|^2+y^3)}{(xy-|z|^2)^2}, \qquad&S_{1{\bar{2}}}&=\tfrac{(x^2+y^2)+i(xy-|z|^2)}{(xy-|z|^2)^2},\\ Q^1_{1{\bar{1}}}&=\tfrac{x(x|z|^2+y^3)}{(xy-|z|^2)^2}, \qquad&Q^1_{2{\bar{2}}}&=\tfrac{y(x|z|^2+y^3)}{(xy-|z|^2)^2}, \qquad&Q^1_{1{\bar{2}}}&=\tfrac{z(x|z|^2+y^3)}{(xy-|z|^2)^2},\\ Q^2_{1{\bar{1}}}&= \tfrac{2y^2}{xy-|z|^2}, \qquad&Q^2_{2{\bar{2}}}&=\tfrac{2|z|^2}{xy-|z|^2}, \qquad&Q^2_{1{\bar{2}}}&=\tfrac{2iyz}{xy-|z|^2},\\ Q^3_{1{\bar{1}}}&=\tfrac{(x^2+y^2)|z|^2}{(xy-|z|^2)^2}, \qquad&Q^3_{2{\bar{2}}}&=\tfrac{y^4+|z|^4}{(xy-|z|^2)^2}, \qquad&Q^3_{1{\bar{2}}}&=\tfrac{z(x+iy)(|z|^2-iy^2)}{(xy-|z|^2)^2},\\ Q^4_{1{\bar{1}}}&=\tfrac{y^2}{xy-|z|^2}, \qquad&Q^4_{2\bar{2}}&=\tfrac{|z|^2}{xy-|z|^2}, \qquad&Q^4_{1\bar{2}}&=\tfrac{iyz}{xy-|z|^2}. \end{aligned} \end{aligned}$$

1.6 Inoue surfaces of type \(S^0\)

$$\begin{aligned} \begin{aligned} S_{1{\bar{1}}}&= \tfrac{x ((b^2+9a^2)|z|^2+4a^2(xy-|z|^2) )}{(xy-|z|^2)^2}, \\ S_{2{\bar{2}}}&= \tfrac{xy ((b^2+9a^2)|z|^2-8a^2(xy-|z|^2) )}{(xy-|z|^2)^2}, \\ S_{1{\bar{2}}}&= \tfrac{xz ((b^2+9a^2)xy -2a(a+ib)(xy-|z|^2) )}{(xy-|z|^2)^2}, \\ Q^1_{1{\bar{1}}}&= \tfrac{x^2 ((b^2+9a^2)|z|^2+4a^2(xy-|z|^2) )}{(xy-|z|^2)^2}, \\ Q^1_{2{\bar{2}}}&= \tfrac{xy ((b^2+9a^2)|z|^2+4a^2(xy-|z|^2) )}{(xy-|z|^2)^2}, \\ Q^1_{1{\bar{2}}}&= \tfrac{xz ((b^2+9a^2)|z|^2+4a^2(xy-|z|^2) )}{(xy-|z|^2)^2}, \\ Q^2_{1{\bar{1}}}&= \tfrac{8a^2x^2}{xy-|z|^2}, \\ Q^2_{2{\bar{2}}}&= \tfrac{2(b^2+a^2)|z|^2}{xy-|z|^2}, \\ Q^2_{1{\bar{2}}}&= \tfrac{-4a(a+ib)}{xy-|z|^2}, \\ Q^3_{1{\bar{1}}}&= \tfrac{(b^2+9a^2)x^2|z|^2}{(xy-|z|^2)^2}, \\ Q^3_{2{\bar{2}}}&= \tfrac{(b^2+9a^2)|z|^4 +4a^2(xy+2|z|^2)(xy-|z|^2)}{(xy-|z|^2)^2}, \\ Q^3_{1{\bar{2}}}&= \tfrac{xz ((b^2+9a^2)|z|^2 +2a(3a+ib)(xy-|z|^2) )}{(xy-|z|^2)^2}, \\ Q^4_{1{\bar{1}}}&= \tfrac{4a^2x^2}{xy-|z|^2}, \\ Q^4_{2{\bar{2}}}&= \tfrac{(b^2+a^2)|z|^2}{xy-|z|^2}, \\ Q^4_{1{\bar{2}}}&= \tfrac{-2a(a+ib)}{xy-|z|^2}. \\ \end{aligned} \end{aligned}$$

Here, \(a,b\in {\mathbb R}\) denotes the parameters of the family of complex structures on Inoue surfaces of type \(S^0\).

1.7 Inoue surfaces of type \(S^{\pm }\)

For what concerns the complex structure \(J_1\) on Inoue surfaces of type \(S^\pm\), we get

$$\begin{aligned} \begin{aligned} S_{1{\bar{1}}}&= \tfrac{-2(xy-|z|^2)^2-xy(xy-|z|^2)-(z^2+\bar{z}^2)|z|^2+2xy|z|^2}{(xy-|z|^2)^2}, \\ S_{2{\bar{2}}}&= \tfrac{y^2 (xy+|z|^2-(z^2+\bar{z}^2) )}{(xy-|z|^2)^2}, \\ S_{1{\bar{2}}}&= \tfrac{xy^2(z-\bar{z})+yz(xy-z^2)}{(xy-|z|^2)^2}, \\ Q^1_{1{\bar{1}}}&= \tfrac{xy (xy+|z|^2-(z^2+\bar{z}^2) )}{(xy-|z|^2)^2}, \\ Q^1_{2{\bar{2}}}&= \tfrac{y^2 (xy+|z|^2-(z^2+\bar{z}^2) )}{(xy-|z|^2)^2},\\ Q^1_{1{\bar{2}}}&= \tfrac{yz ((z-\bar{z})|z|^2+xyz-z^3 )}{(xy-|z|^2)^2}, \\ Q^2_{1{\bar{1}}}&= \tfrac{2|z|^2}{xy-|z|^2},\\ Q^2_{2{\bar{2}}}&= \tfrac{2y^2}{xy-|z|^2}, \\ Q^2_{1{\bar{2}}}&= \tfrac{2y\bar{z}}{xy-|z|^2}, \\ Q^3_{1{\bar{1}}}&= \tfrac{x^2y^2-xy(z^2+\bar{z}^2)+|z|^4}{(xy-|z|^2)^2},\\ Q^3_{2{\bar{2}}}&= \tfrac{y^2 (2|z|^2-(z^2+\bar{z}^2) )}{(xy-|z|^2)^2}, \\ Q^3_{1{\bar{2}}}&= \tfrac{y(xy-z^2)(z-\bar{z})}{(xy-|z|^2)^2},\\ Q^4_{1{\bar{1}}}&= \tfrac{|z|^2}{xy-|z|^2},\\ Q^4_{2{\bar{2}}}&= \tfrac{y^2}{xy-|z|^2},\\ Q^4_{1{\bar{2}}}&= \tfrac{y\bar{z}}{xy-|z|^2}. \\ \end{aligned} \end{aligned}$$

On the other hand, given the complex structure \(J_2\) on Inoue surfaces of type \(S^+\), we get

$$\begin{aligned} \begin{aligned} S_{1{\bar{1}}}&= \tfrac{xy^2(4x-y) -(2|z|^2 -2y^2 +z^2+\bar{z}^2)|z|^2 -y(7x-(z+\bar{z}))(xy-|z|^2)}{(xy-|z|^2)^2}, \\ S_{2{\bar{2}}}&= \tfrac{y^2 (|z|^2+y^2+xy-(z^2+\bar{z}^2) )}{(xy-|z|^2)^2},\\ S_{1{\bar{2}}}&= \tfrac{y^2(xy-|z|^2)+xy^2(2z^2-\bar{z})+zy(y^2-z^2)}{(xy-|z|^2)^2}, \\ Q^1_{1{\bar{1}}}&= \tfrac{xy (|z|^2-(z^2+\bar{z}^2)+y(x+y) )}{(xy-|z|^2)^2},\\ Q^1_{2{\bar{2}}}&= \tfrac{y^2 (|z|^2-(z^2+\bar{z}^2)+y(x+y) )}{(xy-|z|^2)^2},\\ Q^1_{1{\bar{2}}}&= \tfrac{y ((z-\bar{z})|z|^2 +xyz +y^2z -z^3 )}{(xy-|z|^2)^2},\\ Q^2_{1{\bar{1}}}&= \tfrac{2(|z|^2 +y(z+\bar{z}) +y^2 ))}{xy-|z|^2},\\ Q^2_{2{\bar{2}}}&= \tfrac{2y^2}{xy-|z|^2},\\ Q^2_{1{\bar{2}}}&= \tfrac{2y(y+\bar{z})}{xy-|z|^2}, \\ Q^3_{1{\bar{1}}}&= \tfrac{2xy|z|^2-xy(z^2+\bar{z}^2)+y^2|z|^2 +(xy-y(z+\bar{z})-|z|^2)(xy-|z|^2)}{(xy-|z|^2)^2}, \\ Q^3_{2{\bar{2}}}&= \tfrac{y^2 (2|z|^2-(z^2+\bar{z}^2)+y^2 )}{(xy-|z|^2)^2},\\ Q^3_{1{\bar{2}}}&= \tfrac{y (z|z|^2 +y|z|^2 -xy(z-\bar{z}) -z^3 +y^2z -xy^2 )}{(xy-|z|^2)^2}, \\ Q^4_{1{\bar{1}}}&= \tfrac{|z|^2+y(z+\bar{z})+y^2}{xy-|z|^2},\\ Q^4_{2{\bar{2}}}&= \tfrac{y^2}{xy-|z|^2},\\ Q^4_{1{\bar{2}}}&= \tfrac{y(y+\bar{z})}{xy-|z|^2}.\\ \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pediconi, F., Pujia, M. Hermitian curvature flow on complex locally homogeneous surfaces. Annali di Matematica 200, 815–844 (2021). https://doi.org/10.1007/s10231-020-01015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-020-01015-z

Keywords

Mathematics Subject Classification

Navigation