Skip to main content
Log in

A constitutive framework for finite viscoelasticity and damage based on the Gram–Schmidt decomposition

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A novel thermodynamic framework for the continuum mechanical response of nonlinear solids is described. Large deformations, nonlinear hyperelasticity, viscoelasticity, and property changes due to evolution of damage in the material are all encompassed by the general theory. The deformation gradient is decomposed in Gram–Schmidt fashion into the product of an orthogonal matrix and an upper triangular matrix, where the latter can be populated by six independent strain attributes. Strain attributes, in turn, are used as fundamental independent variables in the thermodynamic potentials, rather than the usual scalar invariants of deformation tensors as invoked in more conventional approaches. A complementary set of internal variables also enters the thermodynamic potentials to enable history and rate dependence, i.e., viscoelasticity, and irreversible stiffness degradation, i.e., damage. Governing equations and thermodynamic restrictions imposed by the entropy production inequality are derived. Mechanical, thermodynamic, and kinetic relations are presented for material symmetries that reduce to cubic or isotropic thermoelasticity in the small strain limit, restricted to isotropic damage. Representative models and example problems demonstrate utility and flexibility of this theory for depicting nonlinear hyperelasticity, viscoelasticity, and/or damage from cracks or voids, with physically measurable parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fung, Y.-C.: Biomechanics: Motion, Flow, Stress, and Growth. Springer, New York (1990)

    MATH  Google Scholar 

  2. Fung, Y.-C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer, New York (1993)

    Google Scholar 

  3. Humphrey, J.D.: Continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. A 459, 3–46 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Rodríguez, J.F., Cacho, F., Bea, J.A., Doblaré, M.: A stochastic-structurally based three dimensional finite-strain damage model for fibrous soft tissue. J. Mech. Phys. Solids 54, 864–886 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Balzani, D., Brinkhues, S., Holzapfel, G.A.: Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls. Comput. Methods Appl. Mech. Eng. 213, 139–151 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Regueiro, R.A., Zhang, B., Wozniak, S.L.: Large deformation dynamic three-dimensional coupled finite element analysis of soft biological tissues treated as biphasic porous media. Comput. Model. Eng. Sci. (CMES) 98, 1–39 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Fankell, D.P., Regueiro, R.A., Kramer, E.A., Ferguson, V.L., Rentschler, M.E.: A small deformation thermoporomechanics finite element model and its application to arterial tissue fusion. J. Biomech. Eng. 140, 031007 (2018)

    Google Scholar 

  8. Simo, J.C.: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153–173 (1987)

    MATH  Google Scholar 

  9. Holzapfel, G.A., Simo, J.C.: A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int. J. Solids Struct. 33, 3019–3034 (1996)

    MATH  Google Scholar 

  10. Holzapfel, G.A.: On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int. J. Numer. Meth. Eng. 39, 3903–3926 (1996)

    MATH  Google Scholar 

  11. Liu, H., Holzapfel, G.A., Skallerud, B.H., Prot, V.: Anisotropic finite strain viscoelasticity: constitutive modeling and finite element implementation. J. Mech. Phys. Solids 124, 172–188 (2019)

    MathSciNet  Google Scholar 

  12. Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35, 3455–3482 (1998)

    MATH  Google Scholar 

  13. Clayton, J.D., McDowell, D.L., Bammann, D.J.: A multiscale gradient theory for elastoviscoplasticity of single crystals. Int. J. Eng. Sci. 42, 427–457 (2004)

    MATH  Google Scholar 

  14. Clayton, J.D.: A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire. Proc. R. Soc. Lond. A 465, 307–334 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Clayton, J.D.: Nonlinear Mechanics of Crystals. Springer, Dordrecht (2011)

    MATH  Google Scholar 

  16. Ghosh, P., Srinivasa, A.R.: Development of a finite strain two-network model for shape memory polymers using QR decomposition. Int. J. Eng. Sci. 81, 177–191 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)

    MathSciNet  Google Scholar 

  18. Freed, A.D., Zamani, S.: On the use of convected coordinate systems in the mechanics of continuous media derived from a QR factorization of F. Int. J. Eng. Sci. 127, 145–161 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Freed, A.D., Zamani, S.: Elastic Kelvin-Poisson-Poynting solids described through scalar conjugate stress/strain pairs derived from a QR factorization of F. J. Mech. Phys. Solids 129, 278–293 (2019)

    MathSciNet  Google Scholar 

  20. Freed, A.D., Graverend, J.-B., Rajagopal, K.R.: A decomposition of Laplace stretch with applications in inelasticity. Acta Mech. 230, 3423–3429 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Criscione, J.C.: A constitutive framework for tubular structures that enables a semi-inverse solution to extension and inflation. J. Elast. 77, 57–81 (2004)

    MathSciNet  MATH  Google Scholar 

  22. McLellan, A.G.: Finite strain coordinates and the stability of solid phases. J. Phys. C: Solid State Phys. 9, 4083–4094 (1976)

    Google Scholar 

  23. McLellan, A.G.: The classical thermodynamics of deformable materials. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  24. Srinivasa, A.R.: On the use of the upper triangular (or QR) decomposition for developing constitutive equations for Green-elastic materials. Int. J. Eng. Sci. 60, 1–12 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Criscione, J.C., Humphrey, J.D., Douglas, A.S., Hunter, W.C.: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids 48, 2445–2465 (2000)

    MATH  Google Scholar 

  26. Criscione, J.C., Hunter, W.C.: Kinematics and elasticity framework for materials with two fiber families. Contin. Mech. Thermodyn. 15, 613–628 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Freed, A.D., Erel, V., Moreno, M.: Conjugate stress/strain base pairs for planar analysis of biological tissues. J. Mech. Mater. Struct. 12, 219–247 (2017)

    MathSciNet  Google Scholar 

  28. Freed, A.D.: A note on stress/strain conjugate pairs: explicit and implicit theories of thermoelasticity for anisotropic materials. Int. J. Eng. Sci. 120, 155–171 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Rajagopal, K.R., Srinivasa, A.R.: On the response of non-dissipative solids. Proc. R. Soc. A 463, 357–367 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Freed, A.D., Einstein, D.R.: An implicit elastic theory for lung parenchyma. Int. J. Eng. Sci. 62, 31–47 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Freed, A.D., Rajagopal, K.R.: A promising approach for modeling biological fibers. Acta Mech. 227, 1609–1619 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Freed, A.D., Rajagopal, K.R.: A viscoelastic model for describing the response of biological fibers. Acta Mech. 227, 3367–3380 (2016)

    MathSciNet  Google Scholar 

  33. Freed, A.D.: Soft Solids. Birkhauser, Cham (2016)

    Google Scholar 

  34. Mackenzie, J.K.: The elastic constants of a solid containing spherical holes. Proc. Phys. Soc. B 63, 2–11 (1950)

    MATH  Google Scholar 

  35. Bristow, J.R.: Microcracks, and the static and dynamic elastic constants of annealed and heavily cold-worked metals. Br. J. Appl. Phys. 11, 81–85 (1960)

    Google Scholar 

  36. Budiansky, B., O’Connell, R.J.: Elastic moduli of a cracked solid. Int. J. Solids Struct. 12, 81–97 (1976)

    MATH  Google Scholar 

  37. Rice, J.R.: Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanisms. In: Argon, A.S. (ed.) Constitutive Equations in Plasticity, pp. 23–79. Massachusetts Institute of Technology Press, Cambridge (1975)

    Google Scholar 

  38. Clayton, J.D.: Differential Geometry and Kinematics of Continua. World Scientific, Singapore (2014)

    Google Scholar 

  39. Clayton, J.D.: On anholonomic deformation, geometry, and differentiation. Math. Mech. Solids 17, 702–735 (2012)

    MathSciNet  Google Scholar 

  40. Voyiadjis, G.Z., Kattan, P.I.: Advances in Damage Mechanics: Metals and Metal Matrix Composites. Elsevier, Amsterdam (1999)

    MATH  Google Scholar 

  41. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    MathSciNet  MATH  Google Scholar 

  42. Jog, C.S.: Continuum Mechanics: Volume 1: Foundations and Applications of Mechanics, 3rd edn. Cambridge University Press, Delhi (2015)

    Google Scholar 

  43. Smith, G.F., Rivlin, R.S.: The strain-energy function for anisotropic elastic materials. Trans. Am. Math. Soc. 88, 175–193 (1958)

    MathSciNet  MATH  Google Scholar 

  44. Truesdell, C.A., Noll, W.: The Non-linear Field Theories of Mechanics. Springer, Berlin (1965)

    MATH  Google Scholar 

  45. Clayton, J.D.: Analysis of shock compression of strong single crystals with logarithmic thermoelastic-plastic theory. Int. J. Eng. Sci. 79, 1–20 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Guinan, M.W., Steinberg, D.J.: Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements. J. Phys. Chem. Solids 35, 1501–1512 (1974)

    Google Scholar 

  47. Poirier, J.-P., Tarantola, A.: A logarithmic equation of state. Phys. Earth Planet. Inter. 109, 1–8 (1998)

    Google Scholar 

  48. Clayton, J.D., Tonge, A.: A nonlinear anisotropic elastic-inelastic constitutive model for polycrystalline ceramics and minerals with application to boron carbide. Int. J. Solids Struct. 64–65, 191–207 (2015)

    Google Scholar 

  49. Clayton, J.D.: Finite strain analysis of shock compression of brittle solids applied to titanium diboride. Int. J. Impact Eng. 73, 56–65 (2014)

    Google Scholar 

  50. Anand, L.: On H. Hencky’s approximate strain-energy function for moderate deformations. J. Appl. Mech. 46, 78–82 (1979)

    MATH  Google Scholar 

  51. Fung, Y.-C.: Elasticity of soft tissues in simple elongation. Am. J. Physiol. 213, 1532–1544 (1967)

    Google Scholar 

  52. Vawter, D.L., Fung, Y.-C., West, J.B.: Constitutive equation of lung tissue elasticity. J. Biomech. Eng. 101, 38–45 (1979)

    Google Scholar 

  53. Clayton, J.D.: Crystal thermoelasticity at extreme loading rates and pressures: analysis of higher-order energy potentials. Extrem. Mech. Lett. 3, 113–122 (2015)

    Google Scholar 

  54. Clayton, J.D.: Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids. Springer, Cham (2019)

    MATH  Google Scholar 

  55. Simo, J.C., Pister, K.S.: Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput. Methods Appl. Mech. Eng. 46, 201–215 (1984)

    MATH  Google Scholar 

  56. Fung, Y.-C., Patitucci, P., Tong, P.: Stress and strain in the lung. ASCE J. Eng. Mech. 104, 201–223 (1978)

    Google Scholar 

  57. Lee, G.C., Frankus, A.: Elasticity properties of lung parenchyma derived from experimental distortion data. Biophys. J. 15, 481–493 (1975)

    Google Scholar 

  58. Clayton, J.D., Banton, R.J., Freed, A.D.: A nonlinear thermoelastic-viscoelastic continuum model of lung mechanics for shock wave analysis. In: Lane, J.M.D. (ed.) Shock Compression of Condensed Matter, volume in press. AIP Conference Proceedings (2019)

  59. Clayton, J.D., Freed, A.D.: A continuum mechanical model of the lung. Technical Report ARL-TR-8859, CCDC Army Research Laboratory, Aberdeen Proving Ground (MD) (2019)

  60. Valanis, K.C.: Irreversible Thermodynamics of Continuous Media: Internal Variable Theory. Springer, Wien (1972)

    MATH  Google Scholar 

  61. Wineman, A.: Nonlinear viscoelastic solids—a review. Math. Mech. Solids 14, 300–366 (2009)

    MathSciNet  MATH  Google Scholar 

  62. Hughes, R., May, A.J., Widdicombe, J.G.: Stress relaxation in rabbits’ lungs. J. Physiol. 146, 85–97 (1959)

    Google Scholar 

  63. Zeng, Y.J., Yager, D., Fung, Y.C.: Measurement of the mechanical properties of the human lung tissue. J. Biomech. Eng. 109, 169–174 (1987)

    Google Scholar 

  64. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs, NJ (1969)

    Google Scholar 

  65. Krajcinovic, D.: Damage Mechanics. North-Holland, Amsterdam (1996)

    MATH  Google Scholar 

  66. Bourdin, B., Francfort, G.A., Marigo, J.-J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008)

    MathSciNet  MATH  Google Scholar 

  67. Clayton, J.D., Knap, J.: A geometrically nonlinear phase field theory of brittle fracture. Int. J. Fract. 189, 139–148 (2014)

    Google Scholar 

  68. Clayton, J.D., Knap, J.: Phase field modeling of coupled fracture and twinning in single crystals and polycrystals. Comput. Methods Appl. Mech. Eng. 312, 447–467 (2016)

    MathSciNet  MATH  Google Scholar 

  69. Clayton, J.D.: Finsler geometry of nonlinear elastic solids with internal structure. J. Geom. Phys. 112, 118–146 (2017)

    MathSciNet  MATH  Google Scholar 

  70. Clayton, J.D.: Generalized Finsler geometric continuum physics with applications in fracture and phase transformations. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 68, 9 (2017)

  71. Clayton, J.D., Knap, J.: Continuum modeling of twinning, amorphization, and fracture: theory and numerical simulations. Cont. Mech. Thermodyn. 30, 421–455 (2018)

    MathSciNet  MATH  Google Scholar 

  72. Marshall, J.S., Naghdi, P.M., Srinivasa, A.R.: A macroscopic theory of microcrack growth in brittle materials. Philos. Trans. R. Soc. Lond. A 335, 455–485 (1991)

    MATH  Google Scholar 

  73. Kachanov, M.: Effective elastic properties of cracked solids: critical review of some basic concepts. Appl. Mech. Rev. 45, 304–335 (1992)

    Google Scholar 

  74. Rajendran, A.M.: Modeling the impact behavior of AD85 ceramic under multiaxial loading. Int. J. Impact Eng. 15, 749–768 (1994)

    Google Scholar 

  75. Espinosa, H.D., Zavattieri, P.D., Dwivedi, S.K.: A finite deformation continuum-discrete model for the description of fragmentation and damage in brittle materials. J. Mech. Phys. Solids 46, 1909–1942 (1998)

    MathSciNet  MATH  Google Scholar 

  76. Clayton, J.D.: A model for deformation and fragmentation in crushable brittle solids. Int. J. Impact Eng. 35, 269–289 (2008)

    Google Scholar 

  77. Clayton, J.D.: Deformation, fracture, and fragmentation in brittle geologic solids. Int. J. Fract. 173, 151–172 (2010)

    MATH  Google Scholar 

  78. Kachanov, M., Tsukrov, I., Shafiro, B.: Effective moduli of solids with cavities of various shapes. Appl. Mech. Rev. 47, S151–S174 (1994)

    Google Scholar 

  79. Fond, C.: Cavitation criterion for rubber materials: a review of void-growth models. J. Polym. Sci. B 39, 2081–2096 (2001)

    Google Scholar 

  80. Hang-Sheng, H., Abeyaratne, R.: Cavitation in elastic and elastic-plastic solids. J. Mech. Phys. Solids 40, 571–592 (1992)

    MathSciNet  MATH  Google Scholar 

  81. Steenbrink, A.C., Van Der Giessen, E., Wu, P.D.: Void growth in glassy polymers. J. Mech. Phys. Solids 45, 405–437 (1997)

    Google Scholar 

  82. Volokh, K.Y.: Cavitation instability in rubber. Int. J. Appl. Mech. 3, 299–311 (2011)

    Google Scholar 

  83. Voyiadjis, G.Z., Shojaei, A., Li, G.: A generalized coupled viscoplastic-viscodamage-viscohealing theory for glassy polymers. Int. J. Plast 28, 21–45 (2012)

    Google Scholar 

  84. Xue, L.: Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng. Fract. Mech. 75, 3343–3366 (2008)

    Google Scholar 

  85. Clayton, J.D., Knap, J.: Phase field modeling of directional fracture in anisotropic polycrystals. Comput. Mater. Sci. 98, 158–169 (2015)

    Google Scholar 

  86. Clayton, J.D., Knap, J.: Nonlinear phase field theory for fracture and twinning with analysis of simple shear. Phil. Mag. 95, 2661–2696 (2015)

    Google Scholar 

  87. Rajagopal, K.R., Srinivasa, A.R.: On a class of non-dissipative materials that are not hyperelastic. Proc. R. Soc. A 465, 493–500 (2008)

    MathSciNet  MATH  Google Scholar 

  88. Stamenovic, D.: Micromechanical foundations of pulmonary elasticity. Physiol. Rev. 70, 1117–1134 (1990)

    Google Scholar 

  89. Denny, E., Schroter, R.C.: A model of non-uniform lung parenchyma distortion. J. Biomech. 39, 652–663 (2006)

    Google Scholar 

Download references

Acknowledgements

J.D.C. acknowledges support of the CCDC Army Research Laboratory. A.D.F. acknowledges support of a Joint Faculty Appointment with the CCDC Army Research Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Clayton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clayton, J.D., Freed, A.D. A constitutive framework for finite viscoelasticity and damage based on the Gram–Schmidt decomposition. Acta Mech 231, 3319–3362 (2020). https://doi.org/10.1007/s00707-020-02689-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02689-5

Navigation