Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modeling oncolytic virus dynamics in the tumor microenvironment using zebrafish

Abstract

We have adapted a zebrafish (Danio rerio) tumor xenograft model for use in the study of oncolytic virotherapy. Following implantation of mammalian cancer cells into the perivitelline space of developing zebrafish embryos, both local and intravenous oncolytic virus treatments produce a tumor-specific infection with measurable antitumor effects. Tumor cells are injected at 48 h post fertilization, with oncolytic virus treatment then being administered 24 h later to allow for an initial period of tumor development and angiogenesis. Confocal fluorescent imaging is used to quantify dynamics within the tumor environment. The natural translucency of zebrafish at the embryo stage, coupled with the availability of strains with fluorescent immune and endothelial cell reporter lines, gives the model broad potential to allow for real time, in vivo investigation of important events within tumors throughout the course of virotherapy. Zebrafish xenografts offer a system with biologic fidelity to processes in human cancer development that influence oncolytic virus efficacy, and to our knowledge this is the first demonstration of the model’s use in the context of virotherapy. Compared with other models, our protocol offers a powerful, inexpensive approach to evaluating novel oncolytic viruses and oncolytic virus-based combination therapies, with potential application to investigating the impacts of virotherapy on immune response, tumor vasculature, and metastatic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fluorescent confocal imaging of Zebrafish tumor xenograft model.
Fig. 2: Tumor growth in the xenograft model.
Fig. 3: Tumor-stimulated angiogenesis.
Fig. 4: Innate immune cell visualization.
Fig. 5: Oncolytic Vaccinia virus (vvDD) treatment.
Fig. 6: Antitumor effect following treatment with vvDD.
Fig. 7: Anti-vascular effects following treatment with vvDD.
Fig. 8: Off-target infection and macrophage uptake.

Similar content being viewed by others

References

  1. Peters C, Grandi P, Nigim F. Updates on oncolytic virus immunotherapy for cancers. Mol Ther - Oncolytics. 2019;12:259–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Saha D, Martuza RL, Rabkin SD. Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell. 2017;32:253–67.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dey A, Zhang Y, Castleton AZ, Bailey K, Beaton B, Patel B, et al. The role of neutrophils in measles virus-mediated oncolysis differs between B-cell malignancies and is not always enhanced by GCSF. Mol Ther. 2016;24:184–92.

    Article  CAS  PubMed  Google Scholar 

  4. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–8.

    Article  CAS  PubMed  Google Scholar 

  5. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene. 2000;19:2–12.

    Article  CAS  PubMed  Google Scholar 

  6. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med. 1997;3:639–45.

    Article  CAS  PubMed  Google Scholar 

  7. Breitbach CJ, Arulanandam R, De Silva N, Thorne SH, Patt R, Daneshmand M, et al. Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res. 2013;73:1265–75.

    Article  CAS  PubMed  Google Scholar 

  8. Ottolino-Perry K, Tang N, Head R, Ng C, Arulanandam R, Angarita FA, et al. Tumor vascularization is critical for oncolytic vaccinia virus treatment of peritoneal carcinomatosis. Int J Cancer. 2014;134:717–30.

    Article  CAS  PubMed  Google Scholar 

  9. Avci ME, Keskus AG, Targen S, Isilak ME, Ozturk M, Atalay RC, et al. Development of a novel zebrafish xenograft model in ache mutants using liver cancer cell lines. Sci Rep. 2018;8:1570.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Fazio M, Ablain J, Chuan Y, Langenau DM, Zon LI. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nat Rev Cancer. 2020;20:263–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nicoli S, Presta M. The zebrafish/tumor xenograft angiogenesis assay. Nat Protoc. 2007;2:2918–23.

    Article  CAS  PubMed  Google Scholar 

  12. Rouhi P, Jensen LD, Cao Z, Hosaka K, Lanne T, Wahlberg E, et al. Hypoxia-induced metastasis model in embryonic zebrafish. Nat Protoc. 2010;5:1911–8.

    Article  CAS  PubMed  Google Scholar 

  13. Tulotta C, He S, Chen L, Groenewoud A, van der Ent W, Meijer AH, et al. Imaging of human cancer cell proliferation, invasion, and micrometastasis in a zebrafish xenogeneic engraftment model. In: Kawakami K, Patton EE, Orger M, editors. Zebrafish: methods and protocols. New York: Springer New York; 2016. p. 155–69.

  14. Haldi M, Ton C, Seng WL, McGrath P. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis. 2006;9:139–51.

    Article  PubMed  Google Scholar 

  15. Moshal KS, Ferri-Lagneau KF, Haider J, Pardhanani P, Leung T. Discriminating different cancer cells using a zebrafish in vivo assay. Cancers. 2011;3:4102–13.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jung DW, Oh ES, Park SH, Chang YT, Kim CH, Choi SY et al. A novel zebrafish human tumor xenograft model validated for anti-cancer drug screening. Mol Biosyst. 2012;8:1930–9.

    Article  CAS  PubMed  Google Scholar 

  17. Weintraub A. All eyes on zebrafish. Lab Anim. 2017;46:323–6.

    Article  Google Scholar 

  18. Novoa B, Figueras A. Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. Adv Exp Med Biol. 2012;946:253–75.

    Article  CAS  PubMed  Google Scholar 

  19. Britto DD, Wyroba B, Chen W, Lockwood RA, Tran KB, Shepherd PR, et al. Macrophages enhance Vegfa-driven angiogenesis in an embryonic zebrafish tumour xenograft model. Dis Model Mech. 2018;11.

  20. Nicoli S, Ribatti D, Cotelli F, Presta M. Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res. 2007;67:2927–31.

    Article  CAS  PubMed  Google Scholar 

  21. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496:498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Larson JD, Wadman SA, Chen E, Kerley L, Clark KJ, Eide M, et al. Expression of VE-cadherin in zebrafish embryos: a new tool to evaluate vascular development. Dev Dyn. 2004;231:204–13.

    Article  CAS  PubMed  Google Scholar 

  23. Bennett CM, Kanki JP, Rhodes J, Liu TX, Paw BH, Kieran MW, et al. Myelopoiesis in the zebrafish, Danio rerio. Blood. 2001;98:643–51.

    Article  CAS  PubMed  Google Scholar 

  24. Denton NL, Chen CY, Hutzen B, Currier MA, Scott T, Nartker B, et al. Myelolytic treatments enhance oncolytic herpes virotherapy in models of ewing sarcoma by modulating the immune microenvironment. Mol Ther Oncolytics. 2018;11:62–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, et al. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer. 2019;7:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scurr M, Pembroke T, Bloom A, Roberts D, Thomson A, Smart K, et al. Effect of modified vaccinia Ankara-5T4 and low-dose cyclophosphamide on antitumor immunity in metastatic colorectal cancer: a randomized clinical trial. JAMA Oncol. 2017;3:e172579.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Downs-Canner S, Guo ZS, Ravindranathan R, Breitbach CJ, O’Malley ME, Jones HL, et al. Phase 1 study of intravenous oncolytic poxvirus (vvDD) in patients with advanced solid cancers. Mol Ther. 2016;24:1492–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Park SH, Breitbach CJ, Lee J, Park JO, Lim HY, Kang WK, et al. Phase 1b trial of biweekly intravenous Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus in colorectal cancer. Mol Ther. 2015;23:1532–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McCart JA, Ward JM, Lee J, Hu Y, Alexander HR, Libutti SK, et al. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res. 2001;61:8751–7.

    CAS  PubMed  Google Scholar 

  30. Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002;248:307–18.

    Article  CAS  PubMed  Google Scholar 

  31. Gray C, Loynes CA, Whyte MK, Crossman DC, Renshaw SA, Chico TJ. Simultaneous intravital imaging of macrophage and neutrophil behaviour during inflammation using a novel transgenic zebrafish. Thromb Haemost. 2011;105:811–9.

    Article  CAS  PubMed  Google Scholar 

  32. Prajsnar TK, Hamilton R, Garcia-Lara J, McVicker G, Williams A, Boots M, et al. A privileged intraphagocyte niche is responsible for disseminated infection of Staphylococcus aureus in a zebrafish model. Cell Microbiol. 2012;14:1600–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK, et al. A transgenic zebrafish model of neutrophilic inflammation. Blood. 2006;108:3976–8.

    Article  CAS  PubMed  Google Scholar 

  34. McCart JA, Mehta N, Scollard D, Reilly RM, Carrasquillo JA, Tang N, et al. Oncolytic vaccinia virus expressing the human somatostatin receptor SSTR2: molecular imaging after systemic delivery using 111In-pentetreotide. Mol Ther. 2004;10:553–61.

    Article  CAS  PubMed  Google Scholar 

  35. Subach OM, Cranfill PJ, Davidson MW, Verkhusha VV. An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS ONE. 2011;6:e28674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Arulanandam R, Batenchuk C, Angarita FA, Ottolino-Perry K, Cousineau S, Mottashed A, et al. VEGF-mediated induction of PRD1-BF1/Blimp1 expression sensitizes tumor vasculature to oncolytic virus infection. Cancer Cell. 2015;28:210–24.

    Article  CAS  PubMed  Google Scholar 

  37. Breitbach CJ, Paterson JM, Lemay CG, Falls TJ, McGuire A, Parato KA, et al. Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther. 2007;15:1686–93.

    Article  CAS  PubMed  Google Scholar 

  38. Jennings VA, Scott GB, Rose AMS, Scott KJ, Migneco G, Keller B, et al. Potentiating oncolytic virus-induced immune-mediated tumor cell killing using histone deacetylase inhibition. Mol Ther. 2019;27:1139–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Durham NM, Mulgrew K, McGlinchey K, Monks NR, Ji H, Herbst R, et al. Oncolytic VSV primes differential responses to immuno-oncology therapy. Mol Ther. 2017;25:1917–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fior R, Povoa V, Mendes RV, Carvalho T, Gomes A, Figueiredo N et al. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc Natl Acad Sci USA. 2017;114:E8234–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barriuso J, Nagaraju R, Hurlstone A. Zebrafish: a new companion for translational research in oncology. Clin Cancer Res. 2015;21:969–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vitale G, Gaudenzi G, Dicitore A, Cotelli F, Ferone D, Persani L. Zebrafish as an innovative model for neuroendocrine tumors. Endocr Relat Cancer. 2014;21:R67–83.

    Article  CAS  PubMed  Google Scholar 

  43. Lam SH, Wu YL, Vega VB, Miller LD, Spitsbergen J, Tong Y, et al. Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol. 2006;24:73–5.

    Article  CAS  PubMed  Google Scholar 

  44. Breitbach CJ, De Silva NS, Falls TJ, Aladl U, Evgin L, Paterson J, et al. Targeting tumor vasculature with an oncolytic virus. Mol Ther. 2011;19:886–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chan J, Bayliss PE, Wood JM, Roberts TM. Dissection of angiogenic signaling in zebrafish using a chemical genetic approach. Cancer Cell. 2002;1:257–67.

    Article  CAS  PubMed  Google Scholar 

  46. Weinstein B. Vascular cell biology in vivo: a new piscine paradigm? Trends Cell Biol. 2002;12:439–45.

    Article  CAS  PubMed  Google Scholar 

  47. Keightley MC, Wang CH, Pazhakh V, Lieschke GJ. Delineating the roles of neutrophils and macrophages in zebrafish regeneration models. Int J Biochem Cell Biol. 2014;56:92–106.

    Article  CAS  PubMed  Google Scholar 

  48. Forn-Cuni G, Varela M, Pereiro P, Novoa B, Figueras A. Conserved gene regulation during acute inflammation between zebrafish and mammals. Sci Rep. 2017;7:41905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Varela M, Figueras A, Novoa B. Modelling viral infections using zebrafish: Innate immune response and antiviral research. Antivir Res. 2017;139:59–68.

    Article  CAS  PubMed  Google Scholar 

  50. Li Y, Li Y, Cao X, Jin X, Jin T. Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways. Cell Mol Immunol. 2017;14:80–9.

    Article  CAS  PubMed  Google Scholar 

  51. Goody MF, Sullivan C, Kim CH. Studying the immune response to human viral infections using zebrafish. Dev Comp Immunol. 2014;46:84–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Davies ML, Parekh NJ, Kaminsky LW, Soni C, Reider IE, Krouse TE, et al. A systemic macrophage response is required to contain a peripheral poxvirus infection. PLoS Pathog. 2017;13:e1006435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Masemann D, K”ther K, Kuhlencord M, Varga G, Roth J, Lichty BD. et al. Oncolytic influenza virus infection restores immunocompetence of lung tumor-associated alveolar macrophages. OncoImmunology. 2018;7:e1423171

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mejías-Pérez E, Carreño-Fuentes L, Esteban M. Development of a safe and effective vaccinia virus oncolytic vector WR-Δ4 with a set of gene deletions on several viral pathways. Mol Ther - Oncolytics. 2018;8:27–40.

    Article  PubMed  CAS  Google Scholar 

  55. Delwar ZM, Kuo Y, Wen YH, Rennie PS, Jia W. Oncolytic virotherapy blockade by microglia and macrophages requires STAT1/3. Cancer Res. 2018;78:718–30.

    Article  CAS  PubMed  Google Scholar 

  56. Wu L, Huang TG, Meseck M, Altomonte J, Ebert O, Shinozaki K, et al. rVSV(M Delta 51)-M3 is an effective and safe oncolytic virus for cancer therapy. Hum Gene Ther. 2008;19:635–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nguyen-Chi M, Laplace-Builhe B, Travnickova J, Luz-Crawford P, Tejedor G, Phan QT, et al. Identification of polarized macrophage subsets in zebrafish. eLife. 2015;4:e07288.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yan C, Yang Q, Gong Z. Tumor-associated neutrophils and macrophages promote gender disparity in hepatocellular carcinoma in zebrafish. Cancer Res. 2017;77:1395–407.

    Article  CAS  PubMed  Google Scholar 

  59. Wiegertjes GF, Wentzel AS, Spaink HP, Elks PM, Fink IR. Polarization of immune responses in fish: the ‘macrophages first’ point of view. Mol Immunol. 2016;69:146–56.

    Article  CAS  PubMed  Google Scholar 

  60. Feng Y, Santoriello C, Mione M, Hurlstone A, Martin P. Live imaging of innate immune cell sensing of transformed cells in zebrafish larvae: parallels between tumor initiation and wound inflammation. PLoS Biol. 2010;8:e1000562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bojarczuk A, Miller KA, Hotham R, Lewis A, Ogryzko NV, Kamuyango AA. et al. Cryptococcus neoformans intracellular proliferation and capsule size determines early macrophage control of infection. Sci Rep.2016;6:1–15.

    Article  CAS  Google Scholar 

  62. Lee TJ, Nair M, Banasavadi-Siddegowda Y, Liu J, Nallanagulagari T, Jaime-Ramirez AC, et al. Enhancing therapeutic efficacy of oncolytic herpes simplex virus-1 with integrin beta1 blocking antibody OS2966. Mol Cancer Ther. 2019;18:1127–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hou W, Chen H, Rojas J, Sampath P, Thorne SH. Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF. Int J Cancer. 2014;135:1238–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wenes M, Shang M, Di Matteo M, Goveia J, Martin-Perez R, Serneels J, et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 2016;24:701–15.

    Article  CAS  PubMed  Google Scholar 

  65. Wikberg ML, Ling A, Li X, Oberg A, Edin S, Palmqvist R. Neutrophil infiltration is a favorable prognostic factor in early stages of colon cancer. Hum Pathol. 2017;68:193–202.

    Article  CAS  PubMed  Google Scholar 

  66. Forssell J, Oberg A, Henriksson ML, Stenling R, Jung A, Palmqvist R. High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res. 2007;13:1472–9.

    Article  CAS  PubMed  Google Scholar 

  67. He S, Lamers GE, Beenakker JW, Cui C, Ghotra VP, Danen EH, et al. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J Pathol. 2012;227:431–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sanderson LE, Chien AT, Astin JW, Crosier KE, Crosier PS, Hall CJ. An inducible transgene reports activation of macrophages in live zebrafish larvae. Dev Comp Immunol. 2015;53:63–9.

    Article  CAS  PubMed  Google Scholar 

  69. Wu JQ, Zhai J, Li CY, Tan AM, Wei P, Shen LZ et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in gastric cancer. J Exp Clin Cancer Res. 2017;36:160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Mercatali L, La Manna F, Groenewoud A, Casadei R, Recine F, Miserocchi G. et al. Development of a patient-derived xenograft (PDX) of breast cancer bone metastasis in a zebrafish model. Int J Mol Sci. 2016;17:1375.

    Article  PubMed Central  CAS  Google Scholar 

  71. Wang L, Chen H, Fei F, He X, Sun S, Lv K. et al. Patient-derived heterogeneous xenograft model of pancreatic cancer using zebrafish larvae as hosts for comparative drug assessment. J Vis Exp. 2019;146:e59507.

    Google Scholar 

  72. Gaudenzi G, Albertelli M, Dicitore A, Wurth R, Gatto F, Barbieri F, et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in neuroendocrine tumors. Endocrine. 2017;57:214–9.

    Article  CAS  PubMed  Google Scholar 

  73. Choi SY, Lin D, Gout PW, Collins CC, Xu Y, Wang Y. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv Drug Deliv Rev. 2014;79–80:222–37.

    Article  PubMed  CAS  Google Scholar 

  74. Acuna SA, Ottolino-Perry K, Cako B, Tang N, Angarita FA, McCart JA. Oncolytic vaccinia virus as an adjuvant treatment to cytoreductive surgery for malignant peritoneal mesothelioma. Ann Surg Oncol. 2014;21:2259–66.

    Article  PubMed  Google Scholar 

  75. Antoine TE, Jones KS, Dale RM, Shukla D, Tiwari V. Zebrafish: modeling for herpes simplex virus infections. Zebrafish. 2014;11:17–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guerra-Varela J, Baz-Martinez M, Da Silva-Alvarez S, Losada AP, Quiroga MI, Collado M, et al. Susceptibility of zebrafish to vesicular stomatitis virus infection. Zebrafish. 2018;15:124–32.

    Article  CAS  PubMed  Google Scholar 

  77. Seo J, Yun CO, Kwon OJ, Choi EJ, Song JY, Choi I et al. A proteoliposome containing apolipoprotein A-I mutant (V156K) enhances rapid tumor regression activity of human origin oncolytic adenovirus in tumor-bearing zebrafish and mice. Mol Cells. 2012;34:143–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nylund A, Watanabe K, Nylund S, Karlsen M, Saether PA, Arnesen CE et al. Morphogenesis of salmonid gill poxvirus associated with proliferative gill disease in farmed Atlantic salmon (Salmo salar) in Norway. Arch Virol. 2008;153:1299–309.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of The Terry Fox Foundation, PSI Foundation, Hold ‘em For Life Charity, and the Surgeon Scientist Training Program at the University of Toronto, without which the work would not have been possible. We would also like to acknowledge Dr. Claire Lewis and Dr. Simon Tazzyman from the University of Sheffield, who provided the zebrafish strains used in this work as well as initial expertise in zebrafish methodologies.

Author information

Authors and Affiliations

Authors

Contributions

DM and AM were responsible for developing the zebrafish model, designing the experiments, and writing this paper. ND contributed to early optimization and initial testing. EB and JF were responsible for all zebrafish husbandry and breeding, as well as providing assistance and expertise with zebrafish care. LL and TH were responsible for technical support during each experiment and preparation of reagents and materials.

Corresponding author

Correspondence to David Mealiea.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mealiea, D., Boudreau, E., De Silva, N. et al. Modeling oncolytic virus dynamics in the tumor microenvironment using zebrafish. Cancer Gene Ther 28, 769–784 (2021). https://doi.org/10.1038/s41417-020-0194-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-0194-7

This article is cited by

Search

Quick links