Skip to main content
Log in

Electrical and Optical Properties of Polyvinyl Chloride–Polyacetylene Copolymer

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The temperature dependence of the conductivity of heat-treated polyvinyl chloride films containing conjugated double carbon–carbon bonds in the chain of its macromolecules and representing polyvinyl chloride–polyacetylene copolymers is studied. The samples with an above threshold concentration of conjugated carbon–carbon double bonds and associated charge carriers (π-electrons) exhibit changes in the conductivity by ten orders of magnitude as the temperature increases. It is found that the semiconducting state of the copolymer in the temperature range, the width of which depends on the concentration of conjugated double carbon–carbon bonds and associated charge carriers, is unstable. Qualitatively, the increase in the concentration of conjugated double carbon–carbon bonds was controlled by recording photoluminescent spectra and infrared absorption spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. B. I. Sazhin, Electrical Properties of Polymers (Khimiya, Leningrad, 1977) [in Russian].

    Google Scholar 

  2. Electrical Properties Polymers, Ed. by T. Blythe and D. Bloor, 2nd ed. (Cambridge Univ. Press, Cambridge, 1979).

    Google Scholar 

  3. V. I. Kryshtob and S. I. Rasmagin, Tech. Phys. 62, 1689 (2017).

    Article  Google Scholar 

  4. V. I. Kryshtob, D. V. Vlasov, V. F. Mironov, L. A. Apresyan, T. V. Vlasova, S. I. Rasmagin, Z. A. Kuratashvili, and A. A. Solovskii, Russ. Electr. Eng. 86, 471 (2015).

    Article  Google Scholar 

  5. D. V. Vlasov, V. I. Kryshtob, T. V. Vlasova, L. A. Apresyan, and S. I. Rasmagin, Polymer Sci., Ser. A 57, 304 (2015).

    Article  Google Scholar 

  6. S. I. Rasmagin and V. I. Kryshtob, Usp. Sovrem. Nauki 2 (5), 54 (2017).

    Google Scholar 

  7. V. I. Kryshtob, D. V. Vlasov, V. F. Mironov, L. A. Apresyan, T. V. Vlasova, S. I. Rasmagin, Z. A. Kuratashvili, and A. A. Solovskii, Russ. Electr. Eng. 85, 318 (2014).

    Article  Google Scholar 

  8. V. I. Kryshtob, S. I. Rasmagin, and T. V. Vlasova, Russ. Electr. Eng. 89, 385 (2018).

    Article  Google Scholar 

  9. S. I. Rasmagin, V. I. Krasovskii, V. I. Kryshtob, and I. N. Feofanov, in Proceedings of the 13th International Conference on Pulsed Lasers and Laser Applications, AMPL-2017,2017, p. 64.

  10. J. Dong, P. M. Fredericks, and G. A. George, Polymer Degrad. Stab. 58, 159 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Rasmagin.

Ethics declarations

The authors state declare they have no conflicts of interest.

Additional information

Translated by V. Alekseev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasmagin, S.I., Kryshtob, V.I. Electrical and Optical Properties of Polyvinyl Chloride–Polyacetylene Copolymer. Tech. Phys. 65, 909–913 (2020). https://doi.org/10.1134/S1063784220060249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220060249

Navigation