Skip to main content
Log in

Ceramic Solid Solutions of Li0.17Na0.83TayNb1 –yO3: Thermobaric Synthesis, Microstructure, and Properties

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Ferroelectric ceramic LixNa1 –xTayNb1 –yO3 (x = 0.17, y = 00.5) solid solutions with perovskite structure are synthesized for the first time by the thermobaric synthesis method (6 GPa, 1400–1800 K). The features of their structure and elastic properties are studied. It is shown that ceramic samples consist of grains of isomorphic shape and that faceting is inherent in the perovskite structure, allowing the coexistence of the rhombic phase of different symmetries of the P21ma and Pbcm unit cell. An increase in the synthesis temperature leads to a decrease in the Young’s modulus. The dispersion of the permittivity and its temperature dependence are studied. Specific static values of electrical conductivity and their temperature dependence, as well as the most probable relaxation time, are determined. Carrier activation enthalpies Ha and transport enthalpy Hm are calculated. It is established that the studied ceramic samples undergo a ferroelectric phase transition, while an increase in tantalum concentration lowers the Curie temperature. Li0.17Na0.83Та0.1Nb0.9O3 in the paraelectric phase is found to be a superionic conductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. R. A. Laletin, A. I. Burkhanov, A. V. Sopit, P. V. Bondarenko, S. I. Raevskaya, and I. P. Raevskii, Estestv. Nauki 47 (2), 80 (2014).

    Google Scholar 

  2. S. E. Kichanov, D. P. Kozlenko, N. M. Belozerova, S.  H. Jabarov, R. Z. Mehdiyeva, E. V. Lukin, A. I. Mammadov, H. P. Liermann, W. Morgenroth, L. S. Dubrovinsky, B. N. Savenko, I. P. Raevskii, and N. T. Dang, Ferroelectrics 520, 22 (2017). https://doi.org/10.1080/00150193.2017.1374801

    Article  Google Scholar 

  3. V. S. Bondarev, A. V. Kartashev, M. V. Gorev, I. N. Flerov, E. I. Pogorelcev, M. S. Molokeev, S. I. Raevskaya, D. V. Suzdalev, and I. P. Raevskiy, Phys. Solid State 55, 821 (2013). https://doi.org/10.1134/S1063783413040045

    Article  ADS  Google Scholar 

  4. A. Ya. Dantsiger, O. N. Razumovskaya, L. A. Reznichenko, and S. I. Dudkina, Highly Efficient Piezoelectric Materials. Search Optimization (Poisk, Rostov-on-Don, 1995) [in Russian].

    Google Scholar 

  5. H. Megaw, Ferroelectrics 7, 87 (1974).

    Article  Google Scholar 

  6. R. Ishida and G. Honjo, J. Phys. Jpn. 34, 1279 (1973).

    Article  ADS  Google Scholar 

  7. G. A. Smolenskii, V. A. Bokov, V. A. Isupov, et al., Physics of Ferroelectric Phenomena (Nauka, Leningrad, 1985) [in Russian].

    Google Scholar 

  8. M. V. Gorev, V. S. Bondarev, S. I. Raevskaya, M. P. Ivliev, I. P. Raevskii, and I. N. Flerov, Phys. Solid State 56, 367 (2014).

    Article  ADS  Google Scholar 

  9. R. Jimenez, M. L. Sanjuan, and B. Jimenez, J. Phys.: Condens. Matter 16, 7493 (2004).

    ADS  Google Scholar 

  10. I. P. Raevskii, M. P. Ivliev, L. A. Reznichenko, M. N. Palatnikov, L. E. Balyunis, and M. A. Malitskaya, Tech. Phys. 47, 772 (2002).

    Article  Google Scholar 

  11. Yu. I. Yuzyuk, E. Gagarina, P. Simon, L. A. Reznitchenko, L. Hennet, and D. Thiaudiere, Phys. Rev. B 69, 144105 (2004).

    Article  ADS  Google Scholar 

  12. M. N. Palatnikov, N. V. Sidorov, and V. T. Kalinnikov, Ferroelectric Solid Solutions Based on Niobium and Tantalum Oxide Compounds (Nauka, St. Petersburg, 2002) [in Russian].

    Google Scholar 

  13. M. N. Palatnikov, V. V. Efremov, N. V. Sidorov, E. Y. Obryadina, O. V. Makarova, and V. A. Sandler, Inorg. Mater. 50, 1131 (2014). https://doi.org/10.7868/S0002337X1411013X

    Article  Google Scholar 

  14. B. Hardiman, R. M. Henson, C. P. Peeves, and R. R. Zeyfand, Ferroelectrics 12, 157 (1976).

    Article  Google Scholar 

  15. M. N. Palatnikov, V. V. Efremov, N. V. Sidorov, O. V. Makarova, and V. T. Kalinnikov, Inorg. Mater. 45, 1423 (2009).

    Article  Google Scholar 

  16. M. N. Palatnikov, N. V. Sidorov, V. V. Efremov, O. G. Gromov, and Yu. V. Radyush, Inorg. Mater. 44, 1240 (2008).

    Article  Google Scholar 

  17. N. M. Olekhnovich, Actual Problems of Solid State Physics, Collection of Articles for the 40th Anniversary of the Institute of Physics and Technology of the National Acad. Sci. of Belarus (Bel. Navuka, Minsk, 2003), p. 176 [in Russian].

    Google Scholar 

  18. Yu. V. Radyush, N. M. Olekhnovich, N. P. Vyshatko, I. I. Moroz, A. V. Pushkarev, and M. N. Palatnikov, Inorg. Mater. 40, 971 (2004). https://doi.org/10.1023/B:INMA.0000041331.03980.7a

    Article  Google Scholar 

  19. N. M. Olekhnovich, Yu. V. Radyush, N. P. Vyshatko, I. I. Moroz, A. V. Pushkarev, and M. N. Palatnikov, Phys. Solid State 47, 703 (2005).

    Article  ADS  Google Scholar 

  20. I. Pozdnyakova, A. Navrotsky, L. Shilkina, and L. Reznitchenko, J. Am. Ceram. Soc. 85, 379 (2002).

    Article  Google Scholar 

  21. I. P. Raevski, L. A. Reznitchenko, V. G. Smotrakov, V. V. Eremkin, M. A. Malitskaya, L. A. Shilkina, and E. M. Kuznetsova, Ferroelectrics 265, 129 (2002).

    Article  Google Scholar 

  22. L. A. Reznichenko, L. A. Shilkina, E. S. Gagarina, I. P. Raevski, E. A. Dul’kin, E. M. Kuznetsova, and V. V. Akhnazarova, Crystallogr. Rep. 48, 448 (2003).

    Article  ADS  Google Scholar 

  23. M. V. Gorev, V. S. Bondarev, S. I. Raevskaya, I. N. Flerov, M. A. Malitskaya, and I. P. Raevskii, Bull. Russ. Acad. Sci.: Phys. 80, 1046 (2016).

    Article  Google Scholar 

  24. A. V. Skazochkin, A. S. Useinov, and S. V. Kislov, Pis’ma Mater. 8 (1), 81 (2018). https://doi.org/10.22226/2410-3535-2018-1-81-87

    Article  Google Scholar 

  25. A. Useinov, K. Kravchuk, A. Rusakov, I. Maslenikov, and I. Krasnogorov, Nanoindustriya, No. 7, 72 (2016).

  26. Y. T. Tsai and D. H. Whitmore, Solid State Ionics 7, 129 (1982).

    Article  Google Scholar 

  27. S. Baryshnikov, E. Stukova, and E. Koroleva, Composites, Part B 66, 190 (2014).

    Article  Google Scholar 

  28. J. Hladik, Physics of Electrolytes (Academic, New York, 1972).

    Google Scholar 

  29. V. A. Sandler, N. V. Sidorov, and M. N. Palatnikov, Dielectric Crystals: Symmetry and Physical Properties (Kol’sk. NTs RAN, Apatity, 2010), Part 1 [in Russian].

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-33-00099/19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Efremov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremov, V.V., Shcherbina, O.B., Palatnikov, M.N. et al. Ceramic Solid Solutions of Li0.17Na0.83TayNb1 –yO3: Thermobaric Synthesis, Microstructure, and Properties. Tech. Phys. 65, 896–903 (2020). https://doi.org/10.1134/S1063784220060109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220060109

Navigation