Skip to main content
Log in

Characterization of standardized heavy rainfall profiles for Barcelona city: clustering, rain amounts and intensity peaks

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Standardized heavy rainfall profiles may contribute to a best knowledge concerning flash floods, ground erosion and runoff. Taking advantage of the rain rate gauges network of Barcelona city and applying a short integration time of 5 min, the heavy rainfall records with amounts above 25 mm and longer than 60 min have been selected along 15 years, being detected 499 records corresponding to 67 episodes. The amount distribution of these records are analysed at time deciles. By grouping these standardized rainfall profiles according to their similarity by means of the average linkage clustering algorithm, 10 clusters are derived, each one of them characterized by different time evolution of rainfall. The representative standardized rainfall profiles for every one of the clusters, together with maximum 5-min rain amounts and rainfall amounts characterizing them, permit to distinguish rainfall patterns. In addition, the extreme heavy rainfalls which may lead to flash floods are identified, as also their respective synoptic situations. In short, this analysis offers a description of heavy rainfall patterns in Barcelona city, complementing previous papers on the normalized intensity curves and 5-min intensity return periods. These heavy rainfall analyses would be very useful when designing drainage and sewerage systems in urban areas as Barcelona, where flash floods may be expected due to episodes of notable rainfall amount and intensity. The imperviousness density of the soil and an appropriate sewerage structure should be adapted to mitigate the effects of these copious and intense episodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. www.aemet.es/documentos/es/eltiempo/prediccion/avisos/plan_meteoalerta/plan_meteoalerta.pdf

  2. www.meteo.cat/wpweb/divulgacio/la-prediccio-meteorologica/avisos-smp/

References

  • Acquaotta F, Faccini F, Fratianni S, Paliaga G, Sacchini A, Vilímek V (2018) Increased flash flooding in Genoa Metropolitan Area: a combination of climate changes and soil consumption? Meteorog Atmos Phys 131:1099–1110

    Article  Google Scholar 

  • Al-Rawas GA, Valeo C (2009) Characteristics of rainstorm temporal distributions in arid mountainous and coastal regions. J Hydrol 376:318–326

    Article  Google Scholar 

  • Azli M, Ramachandra RA (2010) Development of Huff curves for Peninsular Malaysia. J Hydrol 388:77–84

    Article  Google Scholar 

  • Argüeso D, Di Luca A, Evans JP (2016) Precipitation over urban areas in the western Maritime Continent using a convection permitting model. Clim Dyn 47:1143–1159

    Article  Google Scholar 

  • Arnaud P, Bouvier C, Cisneros L, Dominguez R (2002) Influence of rainfall spatial variability on flood prediction. J Hydrol 260(1):216–230

    Article  Google Scholar 

  • Back ÁJ (2011) Time distribution of heavy rainfall events in Urussanga, Santa Catarina State, Brazil. Acta Scientiarum Agronomy Maringá 33:583–588

    Google Scholar 

  • Barrera A, Llasat MC, Barriendos M (2006) Estimation of extreme flash flood evolution in Barcelona County from 1351 to 2005. Nat Hazards Earth Syst Sci 6:505–518

    Article  Google Scholar 

  • Bonta JV, Shahalam A (2001) Cumulative storm rainfall distributions: comparison of Huff curves. J Hydrol N Z 42:65–74

    Google Scholar 

  • Bonta JV (2004) Development and utility of Huff curves for disaggregating precipitation amounts. Appl Eng Agric 20:641–653

    Article  Google Scholar 

  • Burgueño A, Codina B, Redaño A, Lorente J (1994) Basic statistical characteristics of hourly rainfall amounts in Barcelona (Spain). Theor Appl Climatol 49:175–181

    Article  Google Scholar 

  • Burgueño A, Serra C, Lana X (2004) Monthly and annual statistical distributions of the daily rainfall at the Fabra Observatory (Barcelona, NE Spain) for the years 1917–1999. Theor Appl Climatol 77:57–75

    Article  Google Scholar 

  • Casas MC, Codina B, Redaño A, Lorente J (2004) A methodology to classify extreme rainfall events in the western Mediterranean area. Theor Appl Climatol 77:139–150

    Article  Google Scholar 

  • Casas MC, Rodríguez R, Redaño A (2010) Analysis of extreme rainfall in Barcelona using a microscale rain gauge network. Meteorol Appl 17:117–123

    Google Scholar 

  • Casas MC, Rodríguez R, Prohom M, Gázquez A, Redaño A (2011) Estimation of the probable maximum precipitation in Barcelona (Spain). Int J Climatol 31:1322–1327

    Article  Google Scholar 

  • Chen Z, Yin L, Chen X, Wei S, Zhu Z (2015) Research on the characteristics of urban rainstorm pattern in the humid area of Southern China: a case study of Guangzhou City. Int J Climatol 35:4370–4386

    Article  Google Scholar 

  • Cuccoli L, Baldini L, Facheris L, Gori S, Gorgucci E (2013) Tomography applied to radiobase network for real time estimation of the rainfall rate fields. Atmos Res 119:62–69

    Article  Google Scholar 

  • Dolšak D, Bezak N, Šraj M (2016) Temporal characteristics of rainfall events under three climate types in Slovenia. J Hydrol 541:1395–1405

    Article  Google Scholar 

  • Emmanuel I, Andrieu H, Leblois E, Flahaut B (2012) Temporal and spatial variability of rainfall at the urban hydrological scale. J Hydrol 430–431:162–172

    Article  Google Scholar 

  • Fadhel S, Rico-Ramirez MA, Han D (2017) Uncertainty of intensity–duration–frequency (IDF) curves due to varied climate baseline periods. J Hydrol 547:600–612

    Article  Google Scholar 

  • Ganeshan M, Murtugudde R, Imhoff ML (2013) A multi-city analysis of the UHI-influence on warm season rainfall. Urban Clim 6:1–23

    Article  Google Scholar 

  • Ghasemi A, Mirzaei S, Mirzaei Y, Raoof M, Moradnezhadi M (2014) Effect of climate on temporal distribution pattern of rainfall and comparing with each other ANF known patterns case study: Ardebil Province – Iran. Bull Environ Pharmacol Life Sci 3:118–125

    Google Scholar 

  • Hamidreza MG, Hasan A, Mohammad J (2010) Study of the temporal distribution pattern of rainfall effect on runoff and sediment generation using rain simulator. World Appl Sci J 11:64–69

    Google Scholar 

  • Han JY, Baik JJ, Lee H (2014) Urban impacts on precipitation. Asia-Pac J Atmos Sci 50:17–30. https://doi.org/10.1007/s13143-014-0016-7

    Article  Google Scholar 

  • Han L, Xu Y, Pan G, Deng X, Hu C, Xu H, Shi H (2015) Changing properties of precipitation extremes in the urban areas, Yangtze River Delta, China, during 1957–2013. Nat Hazards 79:437–454. https://doi.org/10.1007/s11069-015-1850-3

    Article  Google Scholar 

  • Hosseinzadehtalaei P, Tabari H, Willems P (2018) Precipitation intensity–duration–frequency curves for central Belgium with an ensemble of EURO-CORDEX simulations, and associated uncertainties. Atmos Res 200:1–12

    Article  Google Scholar 

  • Huff FA (1967) Time distribution of rainfall in heavy storms. Water Resour Res 3:1007–1019

    Article  Google Scholar 

  • Huff FA (1970) Time distribution characteristics of rainfall rates. Water Resour Res 6:447–454

    Article  Google Scholar 

  • Huff FA (1990) Time distributions of heavy rain storms in Illinois. Illinois State Water Survey, Champaign, 173 pp

    Google Scholar 

  • Huth R, Nemesova I, Klimperová N (1993) Weather categorization based on the average linkage clustering technique: an application to European mid-latitudes. Int J Climatol 13:817–835. https://doi.org/10.1002/joc.3370130802

    Article  Google Scholar 

  • Kalkstein LS, Tang G, Skindlov JA (1987) An evaluation of three clustering procedures for use in synoptic climatological classifications. J Clim Appl Meteorol 26:717–730

    Article  Google Scholar 

  • Keifer CJ, Chu HH (1997) Synthetic storm pattern for drainage design. J Hydraul Div 83:1–25

    Google Scholar 

  • Kishtawal CM, Niyogi D, Tewari M, Pielke RA, Marshall SJ (2010) Urbanization signature in the observed heavy rainfall climatology over India. Int J Climatol 30:1908–1916

    Article  Google Scholar 

  • Kusaka H, Nawata K, Suzuki-Parker A, Takane Y, Furuhashi N (2014) Mechanism of precipitation increase with urbanization in Tokyo as revealed by ensemble climate simulations. J Appl Meteorol Climatol 53:824–839

    Article  Google Scholar 

  • Lana X, Fernández-Mills G (1994) Minimum sample size for synoptic weather type classification. Application to winter period data recorded in the Catalan coast (NE–Spain). Int J Climatol 14:1051–1060

    Article  Google Scholar 

  • Lana X, Martínez MD, Serra C, Burgueño A (2005) Periodicities and irregularities of indices describing the daily pluviometric regime of the Fabra Observatory (NE Spain) for the years 1917-1999. Theor Appl Climatol 82:183–198

    Article  Google Scholar 

  • Lana X, Martínez MD, Burgueño A, Serra C, Martín-Vide J, Gómez L (2006) Distribution of long dry spells in the Iberian Peninsula, years 1951-1990. Int J Climatol 26:1992–2021

    Article  Google Scholar 

  • Lana X, Burgueño A, Serra C, Martínez MD (2017) Multifractality and autoregressive processes of dry spell lengths in Europe: an approach to their complexity and predictability. Theor Appl Climatol 127:285–303. https://doi.org/10.1007/s00704-015-1638-0

    Article  Google Scholar 

  • Lana X, Serra C, Casas-Castillo MC, Rodríguez-Solà R, Redaño A, Burgueño A (2018a) Rainfall intensity patterns derived from the urban network of Barcelona (NE Spain). Theor Appl Climatol 133:385–403. https://doi.org/10.1007/s00704-017-2193-7

    Article  Google Scholar 

  • Lana X, Casas-Castillo MC, Serra C, Rodríguez-Solà R, Redaño A, Burgueño A, Martínez MD (2018b) Return period curves for extreme 5-min rainfall amounts at the Barcelona urban network. Theor Appl Climatol 135:1243–1257. https://doi.org/10.1007/s00704-018-2434-4

    Article  Google Scholar 

  • Llasat MC, Marcos R, Llasat-Botija M, Gilabert J, Turco M, Quintana-Seguí P (2014) Flash flood evolution in North-Western Mediterranean. Atmos Res 149:230–243

    Article  Google Scholar 

  • Nojumuddin NS, Yusof F, Yusop Z (2015) Identification of rainfall patterns in Johor. Appl Math Sci 9:1869–1888

    Google Scholar 

  • Pan C, Wang X, Liu L, Huang H, Wang D (2017) Improvement to the Huff curve for design storms and urban flooding simulations in Guangzhou. China Water 9:411. https://doi.org/10.3390/w9060411

    Article  Google Scholar 

  • Pilgrim DH, Cordery I (1975) Rainfall temporal patterns for design floods. J Hydraul Div 101:81–95

    Google Scholar 

  • Raso J, Malgrat P, Castillo F (1995) Improvements in the selection of design storms for the new master drainage plan of Barcelona. Water Sci Technol 32:217–224

    Article  Google Scholar 

  • Redaño A, Lorente J, Vázquez R (1986) Climatología de las intensidades extremas de lluvia en Barcelona. Rev Geofísic 42:193–198

    Google Scholar 

  • Rodríguez R, Navarro X, Casas MC, Ribalaygua J, Russo B, Pouget L, Redaño A (2014) Influence of climate change on IDF curves for the metropolitan area of Barcelona (Spain). Int J Climatol 34:643–654. https://doi.org/10.1002/joc.3712

    Article  Google Scholar 

  • Schmid PE, Niyogi D (2013) Impact of city size on precipitation-modifying potential. Geophys Res Lett 40:5263–5267. https://doi.org/10.1002/grl.50656

    Article  Google Scholar 

  • Simonovic SP, Schardong A, Sandink D, Srivastav R (2016) A web-based tool for the development of intensity duration frequency curves under changing climate. Environ Model Softw 81:136–153

    Article  Google Scholar 

  • Terranova OG, Laquinta P (2011) Temporal properties of rainfall events in Calabria (southern Italy). Nat Hazards Earth Syst Sci 11:751–757

    Article  Google Scholar 

  • Terranova OG, Gariano SL (2014) Rainstorms able to induce flash floods in a Mediterranean-climate region (Calabria, southern Italy). Nat Hazards Earth Syst Sci 14:2423–2434. https://doi.org/10.5194/nhess-14-2423-2014

    Article  Google Scholar 

  • Willems P (2013) Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium. J Hydrol 496:166–177. https://doi.org/10.1016/j.jhydrol.2013.05.037

    Article  Google Scholar 

  • Wright DB, Smith JA, Villarini G, Baeck ML (2012) Hydroclimatology of flash flooding in Atlanta. Water Resour Res 48:W04524. https://doi.org/10.1029/2011WR011371

    Article  Google Scholar 

  • Živkovíć M (1995) Hierarchical clustering of atmospheric soundings. Int J Climatol 15:1099–1114. https://doi.org/10.1002/joc.3370151004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Lana.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lana, X., Rodríguez-Solà, R., Martínez, M.D. et al. Characterization of standardized heavy rainfall profiles for Barcelona city: clustering, rain amounts and intensity peaks. Theor Appl Climatol 142, 255–268 (2020). https://doi.org/10.1007/s00704-020-03315-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03315-z

Key-words

Navigation