Skip to main content
Log in

A chemically stable nanoporous coordination polymer with fixed and free Cu2+ ions for boosted C2H2/CO2 separation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Safely and highly selective acetylene (C2H2) capture is a great challenge, because of its highly explosive nature, as well as its nearly similar molecule size and boiling point toward the main impurity of carbon dioxide (CO2). Adsorption separation has shown a promising future. Herein, a new nanoporous coordination polymer (PCP) adsorbent with fixed and free Cu ions (termed NTU-66-Cu) was prepared through post-synthetic approach via cation exchanging from the pristine NTU-66, an anionic framework with new 3, 4, 6-c topology and two kinds of cages. The NTU-66-Cu shows significantly improved C2H2/CO2 selectivity from 6 to 32 (v/v: 1/1) or 4 to 42 (v/v: 1/4) at low pressure under 298 K, along with enhanced C2H2 capacity (from 89.22 to 111.53 cm3·g−1). More importantly, this observation was further validated by density functional theory (DFT) calculations and breakthrough experiments under continuous and dynamic conditions. Further, the excellent chemical stability enables this adsorbent to achieve recycle C2H2/CO2 separation without loss of C2H2 capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pässler, P.; Hefner, W.; Buckl, K.; Meinass, H.; Meiswinkel, A.; Wernicke, H.-J.; Ebersberg, G.; Müller, R.; Bässler, J.; Behringer, H. et al. Acetylene. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000.

    Google Scholar 

  2. Stang, P. J.; Diederich, F. Modern Acetylene Chemistry; VCH: New York, 1995.

    Google Scholar 

  3. Reid, C. R.; Thomas, K. M. Adsorption kinetics and size exclusion properties of probe molecules for the selective porosity in a carbon molecular sieve used for air separation. J. Phys. Chem. B2001, 105, 10619–10629.

    CAS  Google Scholar 

  4. Lin, J. Y. S. Molecular sieves for gas separation. Science2016, 353, 121–122.

    CAS  Google Scholar 

  5. Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature2016, 532, 435–437.

    Google Scholar 

  6. Wang, H.; Li, J. Microporous metal-organic frameworks for adsorptive separation of C5–C6 alkane isomers. Acc. Chem. Res.2019, 52, 1968–1978.

    CAS  Google Scholar 

  7. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science2013, 341, 1230444.

    Google Scholar 

  8. Walton, K. S. Metal-organic frameworks: Recognizing the unrecognizable. Nat. Chem.2014, 6, 277–278.

    CAS  Google Scholar 

  9. Yang, S. H.; Ramirez-Cuesta, A. J.; Newby, R.; Garcia-Sakai, V.; Manuel, P.; Callear, S. K.; Campbell, S. I.; Tang, C. C.; Schröder, M. Supramolecular binding and separation of hydrocarbons within a functionalized porous metal-organic framework. Nat. Chem.2015, 7, 121–129.

    CAS  Google Scholar 

  10. McDonald, T. M.; Mason, J. A.; Kong, X. Q.; Bloch, E. D.; Gygi, D.; Dani, A.; Crocella, V.; Giordanino, F.; Odoh, S. O.; Drisdell, W. S. et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature2015, 519, 303–308.

    CAS  Google Scholar 

  11. Cadiau, A.; Belmabkhout, Y.; Adil, K.; Bhatt, P. M.; Pillai, R. S.; Shkurenko, A.; Martineau-Corcos, C.; Maurin, G.; Eddaoudi, M. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science2017, 356, 731–735.

    CAS  Google Scholar 

  12. Liao, P. Q.; Huang, N. Y.; Zhang, W. X.; Zhang, J. P.; Chen, X. M. Controlling guest conformation for efficient purification of butadiene. Science2017, 356, 1193–1196.

    CAS  Google Scholar 

  13. Jiang, J. J.; Lu, Z. Y.; Zhang, M. X.; Duan, J. G.; Zhang, W. W.; Pan, Y.; Bai, J. F. Higher symmetry multinuclear clusters of metal-organic frameworks for highly selective CO2 capture. J. Am. Chem. Soc.2018, 140, 17825–17829.

    CAS  Google Scholar 

  14. Wu, H. H.; Gong, Q. H.; Olson, D. H.; Li, J. Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chem. Rev.2012, 112, 836–868.

    CAS  Google Scholar 

  15. Duan, J. G.; Jin, W. Q.; Kitagawa, S. Water-resistant porous coordination polymers for gas separation. Coord. Chem. Rev.2017, 332, 48–74.

    CAS  Google Scholar 

  16. Qazvini, O. T.; Babarao, R.; Telfer, S. G. Multipurpose metal-organic framework for the adsorption of acetylene: Ethylene purification and carbon dioxide removal. Chem. Mater.2019, 31, 4919–4926.

    CAS  Google Scholar 

  17. Han, Y.; Li, J. R.; Xie, Y. B.; Guo, G. S. Substitution reactions in metal-organic frameworks and metal-organic polyhedra. Chem. Soc. Rev.2014, 43, 5952–5981.

    CAS  Google Scholar 

  18. Sen, R.; Saha, D.; Koner, S.; Brandao, P.; Lin, Z. Single crystal to single crystal (SC-to-SC) transformation from a nonporous to porous metal-organic framework and its application potential in gas adsorption and Suzuki coupling reaction through postmodification. Chem.—Eur. J.2015, 21, 5962–5971.

    CAS  Google Scholar 

  19. Li, L.; da Silva, I.; Kolokolov, D. I.; Han, X.; Li, J. N.; Smith, G.; Cheng, Y. Q.; Daemen, L. L.; Morris, C. G.; Godfrey, H. G. W. et al. Post-synthetic modulation of the charge distribution in a metal-organic framework for optimal binding of carbon dioxide and sulfur dioxide. Chem. Sci.2019, 10, 1472–1482.

    CAS  Google Scholar 

  20. Fracaroli, A. M.; Siman, P.; Nagib, D. A.; Suzuki, M.; Furukawa, H.; Toste, F. D.; Yaghi, O. M. Seven post-synthetic covalent reactions in tandem leading to enzyme-like complexity within metal-organic framework crystals. J. Am. Chem. Soc.2016, 138, 8352–8355.

    CAS  Google Scholar 

  21. Wang, X. J.; Li, P. Z.; Liu, L.; Zhang, Q.; Borah, P.; Wong, J. D.; Chan, X. X.; Rakesh, G.; Li, Y. X.; Zhao, Y. L. Significant gas uptake enhancement by post-exchange of zinc(II) with copper(II) within a metal-organic framework. Chem. Commun.2012, 48, 10286–10288.

    CAS  Google Scholar 

  22. Patel, H. A.; Islamoglu, T.; Liu, Z. C.; Nalluri, S. K. M.; Samanta, A.; Anamimoghadam, O.; Malliakas, C. D.; Farha, O. K.; Stoddart, J. F. Noninvasive substitution of K+ sites in cyclodextrin metal-organic frameworks by Li+ ions. J. Am. Chem. Soc.2017, 139, 11020–11023.

    CAS  Google Scholar 

  23. Deng, M. L.; Pan, Y.; Zhu, J. X.; Chen, Z. X.; Sun, Z. Z.; Sun, J. Y.; Ling, Y.; Zhou, Y. M.; Feng, P. Y. Cation-exchange approach to tuning the flexibility of a metal-organic framework for gated adsorption. Inorg. Chem.2017, 56, 5069–5075.

    CAS  Google Scholar 

  24. Gong, Y. N.; Meng, M.; Zhong, D. C.; Huang, Y. L.; Jiang, L.; Lu, T. B. Counter-cation modulation of hydrogen and methane storage in a sodalite-type porous metal-organic framework. Chem. Commun.2012, 48, 12002–12004.

    CAS  Google Scholar 

  25. Yang, S. H.; Lin, X.; Blake, A. J.; Walker, G. S.; Hubberstey, P.; Champness, N. R.; Schroder, M. Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal-organic framework. Nat. Chem.2009, 1, 487–493.

    CAS  Google Scholar 

  26. Nouar, F.; Eckert, J.; Eubank, J. F.; Forster, P.; Eddaoudi, M. Zeolite-like metal-organic frameworks (ZMOFs) as hydrogen storage platform: Lithium and magnesium ion-exchange and H2-(rho-ZMOF) interaction studies. J. Am. Chem. Soc.2009, 131, 2864–2870.

    CAS  Google Scholar 

  27. An, J.; Rosi, N. L. Tuning MOF CO2 adsorption properties via cation exchange. J. Am. Chem. Soc.2010, 132, 5578–5579.

    CAS  Google Scholar 

  28. Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R. V.; Kobayashi, T. C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y. et al. Highly controlled acetylene accommodation in a metal-organic microporous material. Nature2005, 436, 238–241.

    CAS  Google Scholar 

  29. Duan, J. G.; Higuchi, M.; Zheng, J. J.; Noro, S. I.; Chang, I. Y.; Hyeon-Deuk, K.; Mathew, S.; Kusaka, S.; Sivaniah, E.; Matsuda, R. et al. Density gradation of open metal sites in the mesospace of porous coordination polymers. J. Am. Chem. Soc.2017, 139, 11576–11583.

    CAS  Google Scholar 

  30. Lyu, H.; Zhang, Q.; Wang, Y.; Duan, J. G. Unified meso-pores and dense Cu2+ sites in porous coordination polymers for highly efficient gas storage and separation. Dalton Trans.2018, 47, 4424–4427.

    CAS  Google Scholar 

  31. Foo, M. L.; Matsuda, R.; Hijikata, Y.; Krishna, R.; Sato, H.; Horike, S.; Hori, A.; Duan, J. G.; Sato, Y.; Kubota, Y. et al. An adsorbate discriminatory gate effect in a flexible porous coordination polymer for selective adsorption of CO2 over C2H2. J. Am. Chem. Soc.2016, 138, 3022–3030.

    CAS  Google Scholar 

  32. Duan, J. G.; Yang, Z.; Bai, J. F.; Zheng, B. S.; Li, Y. Z.; Li, S. H. Highly selective CO2 capture of an agw-type metal-organic framework with inserted amides: Experimental and theoretical studies. Chem. Commun.2012, 48, 3058–3060.

    CAS  Google Scholar 

  33. Stoeck, U.; Senkovska, I.; Bon, V.; Krause, S.; Kaskel, S. Assembly of metal-organic polyhedra into highly porous frameworks for ethene delivery. Chem. Commun.2015, 51, 1046–1049.

    CAS  Google Scholar 

  34. Guillerm, V.; Weseliiíski, L. J.; Belmabkhout, Y.; Cairns, A. J.; D’Elia, V.; Wojtas, L.; Adil, K.; Eddaoudi, M. Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal-organic frameworks. Nat. Chem.2014, 6, 673–680.

    CAS  Google Scholar 

  35. Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M. Topological Analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev.2014, 114, 1343–1370.

    CAS  Google Scholar 

  36. Spek, A. L. PLATON, A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, 2003.

    Google Scholar 

  37. Zheng, B. S.; Bai, J. F.; Duan, J. G.; Wojtas, L.; Zaworotko, M. J. Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups. J. Am. Chem. Soc.2011, 133, 748–751.

    CAS  Google Scholar 

  38. Li, H.; Li, L. B.; Lin, R. B.; Ramirez, G.; Zhou, W.; Krishna, R.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Microporous metal-organic framework with dual functionalities for efficient separation of acetylene from light hydrocarbon mixtures. ACS Sustainable Chem. Eng.2019, 7, 4897–4902.

    CAS  Google Scholar 

  39. Luo, F.; Yan, C. S.; Dang, L. L.; Krishna, R.; Zhou, W.; Wu, H.; Dong, X. L.; Han, Y; Hu, T. L.; O’Keeffe, M. et al. UTSA-74: A MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation. J. Am. Chem. Soc.2016, 138, 5678–5684.

    CAS  Google Scholar 

  40. Cui, X. L.; Chen, K. J.; Xing, H. B.; Yang, Q. W.; Krishna, R.; Bao, Z. B.; Wu, H.; Zhou, W.; Dong, X. L.; Han, Y. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science2016, 353, 141–144.

    CAS  Google Scholar 

  41. Lee, J.; Chuah, C. Y.; Kim, J.; Kim, Y.; Ko, N.; Seo, Y.; Kim, K.; Bae, T. H.; Lee, E. Separation of acetylene from carbon dioxide and ethylene by a water-stable microporous metal-organic framework with aligned imidazolium groups inside the channels. Angew. Chem., Int. Ed.2018, 57, 7869–7873.

    CAS  Google Scholar 

  42. Scott, H. S.; Shivanna, M.; Bajpai, A.; Madden, D. G.; Chen, K. J.; Pham, T.; Forrest, K. A.; Hogan, A.; Space, B.; Perry, J. J. et al. Highly selective separation of C2H2 from CO2 by a new dichromate-based hybrid ultramicroporous material. ACS Appl. Mater. Interfaces2017, 9, 33395–33400.

    CAS  Google Scholar 

  43. Chen, K. J.; Scott, H. S.; Madden, D. G.; Pham, T.; Kumar, A.; Bajpai, A.; Lusi, M.; Forrest, K. A.; Space, B.; Perry IV, J. J. et al. Benchmark C2H2/CO2 and CO2/C2H2 separation by two closely related hybrid ultramicroporous materials. Chem2016, 1, 753–765.

    CAS  Google Scholar 

  44. Ye, Y. X.; Ma, Z. L.; Lin, R. B.; Krishna, R.; Zhou, W.; Lin, Q. J.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Pore space partition within a metal-organic framework for highly efficient C2H2/CO2 separation. J. Am. Chem. Soc.2019, 141, 4130–4136.

    CAS  Google Scholar 

  45. Zeng, H.; Xie, M.; Huang, Y. L.; Zhao, Y. F.; Xie, X. J.; Bai, J. P.; Wan, M. Y.; Krishna, R.; Lu, W. G.; Li, D. Induced fit of C2H2 in a flexible MOF through cooperative action of open metal sites. Angew. Chem., Int. Ed.2019, 58, 8515–8519.

    CAS  Google Scholar 

  46. Peng, Y. L.; Pham, T.; Li, P. F.; Wang, T.; Chen, Y.; Chen, K. J.; Forrest, K. A.; Space, B.; Cheng, P.; Zaworotko, M. J. et al. Robust ultramicroporous metal-organic frameworks with benchmark affinity for acetylene. Angew. Chem., Int. Ed.2018, 57, 10971–10975.

    CAS  Google Scholar 

  47. Dong, Q. B.; Guo, Y. N.; Cao, H. F.; Wang, S. N.; Matsuda, R.; Duan, J. G. Accelerated C2H2/CO2 separation by a Se-functionalized porous coordination polymer with low binding energy. ACS Appl. Mater. Interfaces2020, 12, 3764–3772.

    CAS  Google Scholar 

  48. Zhou, B. H.; Zheng, J. J.; Duan, J. G.; Hou, C. C.; Wang, Y.; Jin, W. Q.; Xu, Q. Chemically robust, Cu-based porous coordination polymer nanosheets for efficient hydrogen evolution: Experimental and theoretical studies. ACS Appl. Mater. Interfaces2019, 11, 21086–21093.

    CAS  Google Scholar 

  49. Chen, Y.; Wang, B.; Wang, X. Q.; Xie, L. H.; Li, J. P.; Xie, Y. B.; Li, J. R. A copper(II)-paddlewheel metal-organic framework with exceptional hydrolytic stability and selective adsorption and detection ability of aniline in water. ACS Appl. Mater. Interfaces2017, 9, 27027–27035.

    CAS  Google Scholar 

  50. Duan, J. G.; Jin, W. Q.; Krishna, R. Natural gas purification using a porous coordination polymer with water and chemical stability. Inorg. Chem.2015, 54, 4279–4284.

    CAS  Google Scholar 

  51. Chai, J. D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys.2008, 10, 6615–6620.

    CAS  Google Scholar 

  52. Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys.1987, 86, 866–872.

    CAS  Google Scholar 

  53. Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys.1970, 19, 553–566.

    CAS  Google Scholar 

  54. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et. al. Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2009.

    Google Scholar 

  55. Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S. Q.; Space, B.; Wojtas, L. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature2013, 495, 80–84.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial support of the National Natural Science Foundation of China (No. 21671102 and 21973029), the Innovative Research Team Program by the Ministry of Education of China (No. IRT-17R54), the Hunan Provincial Natural Science Foundation of China (No. 2020JJ4290), the Young and Middle-aged Academic Leader of Jiangsu Provincial Blue Project, the Six Talent Peaks Project in Jiangsu Province (No. JY-030) and the State Key Laboratory of Materials-Oriented Chemical Engineering (No. ZK201803). We also thank Prof. M. O’Keeffe and Prof. M. Li for valuable suggestion on topology analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoxu Wang, Yanqing Wang or Jingui Duan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Behera, N., Yang, C. et al. A chemically stable nanoporous coordination polymer with fixed and free Cu2+ ions for boosted C2H2/CO2 separation. Nano Res. 14, 546–553 (2021). https://doi.org/10.1007/s12274-020-2935-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2935-1

Keywords

Navigation