Skip to main content

Advertisement

Log in

Incorporation of Ursolic Acid in Liquid Crystalline Systems Improves the Antifungal Activity Against Candida Sp

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

An Author Correction to this article was published on 28 August 2020

This article has been updated

Abstract

Purpose

Infectious diseases caused by Candida sp. have high drug resistance due to the uncontrolled use of antibiotics. Among the natural products, ursolic acid (UA), a triterpene, has been increasing interest due to its antimicrobial effects. However, the physicochemical properties of UA, such as its low aqueous solubility, lead to failure of therapeutic application. Because of this, drug release systems, such as liquid crystals (LCs), can improve solubilization and increase the therapeutic efficacy of many drugs.

Methods

In this work, we evaluated the antifungal potential of UA and loaded into LC precursor system against Candida sp. The system was composed of oleic acid (30%), polysorbate 80 (60%), and purified water (10%). Polarized light microscopy, rheological assays, and simulated vaginal fluid (SVF) simulations were performed. Cytotoxicity assay was evaluated against L-929 cells (murine fibroblast), and antifungal evaluation was performed by microplate microdilution method against Candida albicans, Candida glabrata, Candida krusei, Candida parapsilosis, and Candida tropicalis.

Results

The system showed acceptable parameters for UA incorporation, such as adhesiveness, texture, and flow behaviors, compatible to vaginal administration. Free UA showed no antifungal activity; however, after incorporation into LCs, it was observed against C. albicans, C. glabrata, C. tropicalis, and C. parapsilosis (MIC values around 500 μg/mL and 3.9 μg/cell viability assays showed moderate cytotoxicity [halo diameter 1.00 ± 0.156]).

Conclusion

In conclusion, the results corroborate in the materials field as a possible alternative in the treatment of infectious diseases by Candida species and the systems showed potential promising for enhancing AU antifungal performance with the application on vulvovaginitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

Abbreviations

AmB:

Amphotericin B

DMEM:

Culture Medium Dulbecco

F:

Formulation containing 60% (w/w) of surfactant, 30% (w/w) of oleic acid, and 10% (w/w) of purified water

F100:

Formulation containing 60% (w/w) of surfactant, 30% (w/w) of oleic acid, and 10% (w/w) of purified water diluted with 100% (v/w) of simulated vaginal fluid

F30:

Formulation containing 60% (w/w) of surfactant, 30% (w/w) of oleic acid, and 10% (w/w) of purified water diluted with 30% (v/w) of simulated vaginal fluid

F50:

Formulation containing 60% (w/w) of surfactant, 30% (w/w) of oleic acid, and 10% (w/w) of purified water diluted with 50% (v/w) of simulated vaginal fluid

FLC:

Fluconazole

FUA:

Formulation containing 60% (w/w) of surfactant, 30% (w/w) of oleic acid, and 10% (w/w) of purified water loaded with ursolic acid (2000 μg/mL)

FUA100:

Formulation containing 60% (w/w) of surfactant, 30% (w/w) of oleic acid, and 10% (w/w) of purified water loaded with ursolic acid (2000 μg/mL) diluted with 100% (v/w) of simulated vaginal fluid

FUA30:

Formulation containing 60% (w/w) of surfactant, 30% (w/w) of oleic acid, and 10% (w/w) of purified water loaded with ursolic acid (2000 μg/mL) diluted with 30% (v/w) of simulated vaginal fluid

FUA50:

Formulation containing 60% (w/w) of surfactant, 30% (w/w) of oleic acid, and 10% (w/w) of purified water loaded with ursolic acid (2000 μg/mL) diluted with 50% (v/w) of simulated vaginal fluid

GTS:

Gelled transparent systems

LCs:

Liquid crystals

LTS:

Liquid transparent systems

MEs:

Microemulsions

MFC:

Minimum fungicidal concentration

MIC:

Minimum inhibitory concentration

NC:

Negative control

OA:

Oleic acid

PC:

Positive control

PS:

Phase separation

RPMI:

Roswell Park Memorial Institute—1640 medium

SDB:

Sabouraud dextrose broth

SVF:

Simulated vaginal fluid

TTC:

Triphenyltetrazolium chloride

UA:

Ursolic acid

References

  1. Ramos MAS, Silva PB, Spósito L, Toledo LG, Bonifácio BV, Rodero CF, et al. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int J Nanomedicine. 2018;13:1179–213.

    Google Scholar 

  2. Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Health and food security—628 TCLocal. Science. 80(742):739–42.

  3. Cortegiani A, Misseri G, Fasciana T, Giammanco A, Giarratano A, Chowdhary A. Epidemiology, clinical characteristics, resistance, and treatment of infections by Candida auris. J Intensive Care. 2018;6(1):1–13.

    Google Scholar 

  4. Pappas GP, Lionakis MS, Arendrup MC, Zeichner LO, Kullberg BJ. Invasive candidiasis. Infect Dis Clin N Am. 2018;30(1):103–24.

    Google Scholar 

  5. Mellinghoff SC, Von Bergwelt-Baildon M, Schoßer HA, Cornely OA. A novel approach to candidemia? The potential role of checkpoint inhibition. Med Mycol. 2019;57(2):151–4.

    CAS  PubMed  Google Scholar 

  6. Chen H, Gao Y, Wang A, Zhou X, Zheng Y, Zhou J. Evolution in medicinal chemistry of ursolic acid derivatives as anticancer agents. Eur J Med Chem. 2015;92:648–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jin YR, Jin JL, Li CH, Piao XX, Jin NG. Ursolic acid enhances mouse liver regeneration after partial hepatectomy. Pharm Biol. 2012;50(4):523–8.

    CAS  PubMed  Google Scholar 

  8. Saravanan R, Viswanathan P, Pugalendi KV. Protective effect of ursolic acid on ethanol-mediated experimental liver damage in rats. Life Sci. 2006;78(7):713–8.

    CAS  PubMed  Google Scholar 

  9. Nascimento PGG, Lemos TLG, Bizerra AMC, Arriaga AMC, Ferreira DA, Santiago GMP, et al. Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules. 2014;19(1):1317–27.

    PubMed  PubMed Central  Google Scholar 

  10. Kurek A, Nadkowska P, Pliszka S, Wolska KI. Modulation of antibiotic resistance in bacterial pathogens by oleanolic acid and ursolic acid. Phytomedicine. 2012;19(6):515–9.

    CAS  PubMed  Google Scholar 

  11. Bonifácio BV, Silva PB, Ramos MAS, Negri MSK, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2013;9(1):1–15.

    PubMed  PubMed Central  Google Scholar 

  12. Jiang Z, Kempinski C, Chappell J. Extraction and analysis of terpenes/terpenoids. Curr Protoc Plant Biol. 2016;1(2):345–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ghosh V, Saranya S, Mukherjee A, Chandrasekaran N. Antibacterial microemulsion prevents sepsis and triggers healing of wound in Wistar rats. Colloids Surf B: Biointerfaces. 2013;105:152–7.

    CAS  PubMed  Google Scholar 

  14. Rajendran R, Radhai R, Kotresh TM, Csiszar E. Development of antimicrobial cotton fabrics using herb loaded nanoparticles. Carbohydr Polym. 2013;91(2):613–7.

    CAS  PubMed  Google Scholar 

  15. Salmazi R, Calixto G, Bernegossi J, Ramos MAS, Bauab TM, Chorilli M. A curcumin-loaded liquid crystal precursor mucoadhesive system for the treatment of vaginal candidiasis. Int J Nanomedicine. 2015;10:4815–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li W, Zhou J, Xu Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed Rep. 2015;3:617–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. CLSI. M27-A3: reference method for broth dilution antifungal susceptibility testing of yeasts. Wayne: Clinical Laboratory Standards Institute; 2008.

    Google Scholar 

  18. Miyashiro CA, Bernegossi J, Bonifácio BV, Toledo LG, Ramos MAS, Bauab TM, et al. Development and characterization of a novel liquid crystalline system containing sodium alginate for incorporation of trans-resveratrol intended for treatment of buccal candidiasis. Pharmazie. 2020;1(75):178–84.

    Google Scholar 

  19. Ceulemans J, Vinckier I, Ludwig A. The use of xanthan gum in an ophthalmic liquid dosage form: rheological characterization of the interaction with mucin. J Pharm Sci. 2002;91:1117–27.

    CAS  PubMed  Google Scholar 

  20. Carvalho FC, Calixto G, Hatakeyama IN, Luz GM, Gremião MPD, Chorilli M. Rheological, mechanical, and bioadhesive behavior of hydrogels to optimize skin delivery systems. Drug Dev Ind Pharm. 2013;39:1750–7.

    CAS  PubMed  Google Scholar 

  21. Calixto GMF, Garcia MH, Cilli EM, Chiavacci LA, Chorilli M. Design and characterization of a novel p1025 peptide-loaded liquid crystalline system for the treatment of dental caries. Molecules. 2016;21:158.

    PubMed  PubMed Central  Google Scholar 

  22. Fonseca-Santos B, Bonifácio BV, Baub TM, Gremião MPD, Chorilli M. In-situ gelling liquid crystal mucoadhesive vehicle for curcumin buccal administration and its potential application in the treatment of oral candidiasis. J Biomed Nanotechnol. 2019;15:1334–44.

    CAS  PubMed  Google Scholar 

  23. Fonseca-Santos B, Ramos MA, Rodero CF, Gremião MPD, Chorilli M. Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery. Int J Nanomedicine. 2016;11:4553–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fonseca-Santos B, Satake CY, Calixto GMF, Ramos MAS, Chorilli M. Trans-resveratrol-loaded nonionic lamellar liquid-crystalline systems: structural, rheological, mechanical, textural, and bioadhesive characterization and evaluation of in vivo anti-inflammatory activity. Int J Nanomedicine. 2017;12:6883–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Calixto GMF, Victorelli FD, Dovigo LN, Chorilli M. Polyethyleneimine and chitosan polymer-based mucoadhesive liquid crystalline systems intended for buccal drug delivery. AAPS PharmSciTech. 2018;19:820–36.

    CAS  PubMed  Google Scholar 

  26. Carvalho FC, Barbi MS, Sarmento VHV, Chiavacci LA, Netto FM, Gremião MPD. Surfactant systems for nasal zidovudine delivery: structural, rheological and mucoadhesive properties. J Pharm Pharmacol. 2010;62:430–9.

    CAS  PubMed  Google Scholar 

  27. Araújo PR, Calixto GMF, Silva IC, Zago PLH, Oshiro Junior JA, Pavan FR, et al. Mucoadhesive in situ gelling liquid crystalline precursor system to improve the vaginal administration of drugs. AAPS PharmSciTech. 2019;20:225–37.

    PubMed  Google Scholar 

  28. Deshkar SS, Palve VK. Formulation and development of thermosensitive cyclodextrin-based in situ gel of voriconazole for vaginal delivery. J Drug Deliv Sci Technol. 2019;49(November 2018):277–85.

    CAS  Google Scholar 

  29. Rençber S, Karavana SY, Şenyiğit ZA, Eraç B, Limoncu MH, Baloğlu E. Mucoadhesive in situ gel formulation for vaginal delivery of clotrimazole: formulation, preparation, and in vitro/in vivo evaluation. Pharm Dev Technol. 2017;22(4):551–61.

    PubMed  Google Scholar 

  30. Bernegossi J, Calixto GMF, Silva Sanches PR, Fontana CR, Cilli EM, Garrido SS, et al. Peptide KSL-W-loaded mucoadhesive liquid crystalline vehicle as an alternative treatment for multispecies oral biofilm. Molecules. 2016;21:1–14.

    Google Scholar 

  31. Bruschi ML. Strategies to modify the drug release from pharmaceutical systems; 2015. p. 1–199.

    Google Scholar 

  32. Formariz TP, Cocenza Urban MC, Da Silva AA, Gremião MPD, De Oliveira AG. Microemulsões e fases líquidas cristalinas como sistemas de liberação de fármacos. Rev Bras Ciencias Farm J Pharm Sci. 2005;41(3):301–13.

    CAS  Google Scholar 

  33. Goodby JWG, Spiess HW, Vill V. Handbook of liquid crystals. 2rd ed. Berlin: Wiley VCH; 1998.

    Google Scholar 

  34. Fehér A, Csányi E, Erös I. In situ forming lyotropic liquid crystalline systems containing metronidazole-benzoate. J Drug Deliv Sci Technol. 2005;15(5):343–6.

    Google Scholar 

  35. Malmsten M. Phase transformations in self-assembly systems for drug delivery applications. J Dispers Sci Technol. 2007:63–72.

  36. Malmsten M. Surfactants and Polymers in Drug Delivery. J Control Release. 2003:415–416.

  37. Garti N, Mezzenga R, Somasundaran P. Self-assembled supramolecular architectures: lyotropic liquid crystals; 2012. p. 396.

    Google Scholar 

  38. Jones DS, Woolfson AD, Brown AF. Textural, viscoelastic and mucoadhesive properties of pharmaceutical gels composed of cellulose polymers. Int J Pharm. 1997;151:223–33.

    CAS  Google Scholar 

  39. Jones DS, Woolfson AD, Brown AF, Coulter WA, McClelland C, Irwin CR. Design, characterisation and preliminary clinical evaluation of a novel mucoadhesive topical formulation containing tetracycline for the treatment of periodontal disease. J Control Release. 2000;67:357–68.

    CAS  PubMed  Google Scholar 

  40. Karavasili C, Fatouros DG. Smart materials: in situ gel-forming systems for nasal delivery. Drug Discov Today. 2016:157–60.

  41. Rupenthal ID, Green CR, Alany RG. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: physicochemical characterisation and in vitro release. Int J Pharm. 2011;411:69–77.

    CAS  PubMed  Google Scholar 

  42. Moreno MA, Frutos P, Ballesteros MP. Lyophilized lecithin based oil-water microemulsions as a new and low toxic delivery system for amphotericin B. Pharm Res. 2001;18:344–51.

    CAS  PubMed  Google Scholar 

  43. Kantarci G, Özgüney I, Karasulu HY, Arzik S, Güneri T. Comparison of different water/oil microemulsions containing diclofenac sodium: preparation, characterization, release rate, and skin irritation studies. AAPS PharmSciTech. 2007;8(4):1–7.

    Google Scholar 

  44. Lee CH, Moturi V, Lee Y. Thixotropic property in pharmaceutical formulations. J Control Release. 2009:88–98.

  45. Chorilli M, Prestes PS, Rigon RB, Leonardi GR, Chiavacci LA, Sarmento VHV, et al. Structural characterization and in vivo evaluation of retinyl palmitate in non-ionic lamellar liquid crystalline system. Colloids Surf B: Biointerfaces. 2011;85:182–8.

    CAS  PubMed  Google Scholar 

  46. Cordobés F, Franco JM, Gallegos C. Rheology of the lamellar liquid-crystalline phase in polyethoxylated alcohol/water/heptane systems. Grasas Aceites. 2005;56:96–105.

    Google Scholar 

  47. Montalvo G, Valiente M, Rodenas E. Rheological properties of the L phase and the hexagonal, lamellar, and cubic liquid crystals of the CTAB/benzyl alcohol/water system. Langmuir. 1996;12:3202–8.

    Google Scholar 

  48. Nixon JR, Chawla BPS. Solubilization and rheology of the system ascorbic acid-water-polysorbate 80: temperature effects. J Pharm Pharmacol. 1969;21:79–84.

    CAS  PubMed  Google Scholar 

  49. Richtering W. Fundamentals of interface and colloid science: volume IV: particulate colloids and volume V: soft colloids. Appl Rheol. 2019;15(5):310.

    Google Scholar 

  50. Alsarra IA, Hamed AY, Alanazi FK, Neau SH. Rheological and mucoadhesive characterization of poly(vinylpyrrolidone) hydrogels designed for nasal mucosal drug delivery. Arch Pharm Res. 2011;34:573–82.

    CAS  PubMed  Google Scholar 

  51. Alsarra IA, Hamed AY, Mahrous GM, El Maghraby GM, Al-Robayan AA, Alanazi FK. Mucoadhesive polymeric hydrogels for nasal delivery of acyclovir polymeric hydrogels for nasal delivery of acyclovir. Drug Dev Ind Pharm. 2009;35:352–62.

    CAS  PubMed  Google Scholar 

  52. Carvalho FC, Campos ML, Peccinini RG, Gremião MPD. Nasal administration of liquid crystal precursor mucoadhesive vehicle as an alternative antiretroviral therapy. Eur J Pharm Biopharm. 2013;84:219–27.

    CAS  PubMed  Google Scholar 

  53. Arancibia C, Bayarri S, Costell E. Effect of hydrocolloid on rheology and microstructure of high-protein soy desserts. J Food Sci Technol. 2015;52:6435–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cardoso VMO, Cury BSF, Evangelista RC, Gremião MPD. Development and characterization of cross-linked gellan gum and retrograded starch blend hydrogels for drug delivery applications. J Mech Behav Biomed Mater. 2017;65:317–33.

    Google Scholar 

  55. Rattan S, Li L, Lau HK, Crosby AJ, Kiick KL. Micromechanical characterization of soft, biopolymeric hydrogels: stiffness, resilience, and failure. Soft Matter. 2018;14:3478–89.

    CAS  PubMed  Google Scholar 

  56. Saxena A, Kaloti M, Bohidar HB. Rheological properties of binary and ternary protein-polysaccharide co-hydrogels and comparative release kinetics of salbutamol sulphate from their matrices. Int J Biol Macromol. 2011;48:263–70.

    CAS  PubMed  Google Scholar 

  57. Rodero CF, Calixto GMF, Santos KC, Sato MR, Ramos MAS, Miró MS, et al. Curcumin-loaded liquid crystalline systems for controlled drug release and improved treatment of vulvovaginal candidiasis. Mol Pharm. 2018;15:4491–504.

    CAS  PubMed  Google Scholar 

  58. Rigon RB, Fachinetti N, Severino P, Santana MHA, Chorilli M. Skin delivery and in vitro biological evaluation of trans-resveratrol-loaded solid lipid nanoparticles for skin disorder therapies. Molecules. 2016;21:116–29.

    PubMed Central  Google Scholar 

  59. Fachinetti N, Rigon RB, Eloy JO, Sato MR, Santos KC, Chorilli M. Comparative study of glyceryl behenate or polyoxyethylene 40 stearate-based lipid carriers for trans-resveratrol delivery: development, characterization and evaluation of the in vitro tyrosinase inhibition. AAPS PharmSciTech. 2018;19:1401–9.

    CAS  PubMed  Google Scholar 

  60. Jabeen K, Javaid A, Ahmad E, Athar M. Antifungal compounds from Melia azedarach leaves for management of Ascochyta rabiei, the cause of chickpea blight. Nat Prod Res. 2011;25(3):264–76.

    CAS  PubMed  Google Scholar 

  61. Bitencourt FG, D Vieira PB, Meirelles LC, Rigo GV, Silva EF, SCB G, et al. Anti-Trichomonas vaginalis activity of ursolic acid derivative: a promising alternative. Parasitol Res. 2018;117:1573–80.

    PubMed  Google Scholar 

  62. Ramos MAS, Silva PB, Toledo LG, Oda FB, Silva IC, Santos LC, et al. Intravaginal delivery of Syngonanthus nitens (Bong.) Ruhland fraction based on a nanoemulsion system applied to vulvovaginal candidiasis treatment. J Biomed Nanotechnol. 2019;15:1072–89.

    Google Scholar 

  63. Ramos MAS, Toledo LG, Calixto GMF, Bonifácio BV, Araújo MGF, Santos LC, et al. Syngonanthus nitens Bong. (Rhul.)-loaded nanostructured system for vulvovaginal candidiasis treatment. Int J Mol Sci. 2016;17(8):1368–87.

    Google Scholar 

  64. Ramos MAS, Calixto G, Toledo LG, Bonifácio BV, Santos LC, Almeida MTG, et al. Liquid crystal precursor mucoadhesive system as a strategy to improve the prophylactic action of Syngonanthus nitens (Bong.) Ruhland against infection by Candida krusei. Int J Nanomedicine. 2015;10:7455–66.

    CAS  Google Scholar 

  65. Victorelli FD, Calixto GMF, Ramos MAS, Bauab TM, Chorilli M. Metronidazole-loaded polyethyleneimine and chitosan-based liquid crystalline system for treatment of staphylococcal skin infections. J Biomed Nanotechnol. 2018;15:1072–89.

    Google Scholar 

  66. Bernegossi J, Fontana AR, Caiaffa KS, Duque C, Chorilli M. Inhibitory effect of a KSL-W peptide-loaded poloxamer 407-based microemulsions for buccal delivery on Fusobacterium nucleatum biofilm. J Biomed Nanotechnol. 2020;16:390–7.

    CAS  PubMed  Google Scholar 

  67. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013:119–28.

  68. Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev. 2012;36:288–305.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the São Paulo Research Foundation—FAPESP (grant #2018/23442-2) for the financial support. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior—Brasil (CAPES)—Finance code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlus Chorilli.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marena, G.D., Fonseca-Santos, B., Matheus Aparecido dos Santos, R. et al. Incorporation of Ursolic Acid in Liquid Crystalline Systems Improves the Antifungal Activity Against Candida Sp. J Pharm Innov 16, 576–586 (2021). https://doi.org/10.1007/s12247-020-09470-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09470-0

Keywords

Navigation