Skip to main content
Log in

Alterations of foliar arthropod communities in a maize agroecosystem induced by the root-associated fungus Trichoderma harzianum

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Plants establish multitrophic interactions above- and belowground with arthropods and microorganisms. Trichoderma spp. are common soil fungi that colonize roots and promote plant growth and health. Under controlled conditions, Trichoderma spp. have been shown to induce plant resistance against the attack of foliar herbivore insects. Here, we investigated the effect of field inoculation with Trichoderma harzianum in the rhizosphere of maize plants during the vegetative plant growth phase on the community of pest and beneficial arthropods associated with maize foliage. Independent of T. harzianum inoculation, the arthropod community was complex and harbored chewing and piercing-sucking herbivores as well as natural enemies. Inoculation with T. harzianum increased the abundance of chewing herbivores, decreased the number of piercing-sucking herbivores and increased the abundance of sampled pest regulating arthropods. In addition, we provide a biochemical basis of shoot metabolites, which may be involved in the alterations of the foliage arthropod community mediated by T. harzianum. Inoculation with T. harzianum caused substantial changes in the levels of sucrose, jasmonic acid (an activator of defense responses against herbivory) and (Z)-3-hexen-1-ol (a volatile compound that attracts natural enemies of herbivores). In conclusion, our results show that inoculation with T. harzianum can alter the arthropod community associated with maize foliage and reduce the abundance of specific pest insects under field conditions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson P, Hilker M, Hansson BS, Bombosch S, Klein B, Schildknecht H (1993) Oviposition deterring components in larval frass of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae): A behavioural and electrophysiological evaluation. J Insect Physiol 39:129–137

    Article  CAS  Google Scholar 

  • AOAC (1990) AOAC Official Methods of Analysis. Kenneth Herrich (ed), 15th edn. Association of Official Analytical Chemists, Arlington

  • Bae H, Sicher R, Kim MS, Kim SM, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295

    Article  CAS  Google Scholar 

  • Battaglia D, Bossi S, Cascone P, Digilio MC, Duran Prieto J, Fanti P, Guerrieri E, Iodice L, Lingua G, Lorito M, Maffei ME, Massa N, Ruocco M, Sasso R, Trotta V (2013) Tomato below ground-above ground interactions: Trichoderma longibrachiatum affects the performance of Macrosiphum euphorbiae and its natural antagonists. Mol Plant Microbe Interact 26:1249–1256

    Article  CAS  Google Scholar 

  • Borror DJ, Triplehorn CA, Johnson NF (1989) An introduction to the study of insects, 6a edn. Saunders College Publishing, Philadelphia

    Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Herrera-Estrella A, López-Bucio J (2014a) The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission. Plant Soil 379:261–274

    Article  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Alfaro-Cuevas R, López-Bucio J (2014b) Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Mol Plant Microbe Interact 6:503–514

    Article  Google Scholar 

  • Contreras-Cornejo HA, del-Val E, Macías-Rodríguez L, Alarcón A, González-Esquivel CE, Larsen J (2018a) Trichoderma atroviride, a maize root associated fungus, increases the parasitism rate of the fall armyworm Spodoptera frugiperda by its natural enemy Campoletis sonorensis. Soil Biol Biochem 122:196–202

    Article  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2018b) The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Appl Soil Ecol 124:45–53

    Article  Google Scholar 

  • de Lange ES, Balmer D, Mauch-Mani B, Turlings TCJ (2014) Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytol 204:329–341

    Article  Google Scholar 

  • Deans CA, Behmer ST, Fiene J, Sword GA (2016) Spatio-temporal, genotypic, and environmental effects on plant soluble protein and digestible carbohydrate content: implications for insect herbivores with cotton as an exemplar. J Chem Ecol 42:1151–1163

    Article  CAS  Google Scholar 

  • Dicke M, van Loon JJA, Soler R (2009) Chemical complexity of volatiles from plants induced by multiple attack. Nat Chem Biol 5:317–324

    Article  CAS  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek C (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759

    Article  CAS  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JA (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785

    Article  CAS  Google Scholar 

  • Fernandez-Conradi P, Jactel H, Robin C, Tack AJM, Castagneyrol B (2018) Fungi reduce preference and performance of insect herbivores on challenged plants. Ecology 99:300–311

    Article  Google Scholar 

  • Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156:145–169

    Article  CAS  Google Scholar 

  • Harman EG, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  Google Scholar 

  • Heinen R, Biere A, Harvey JA, Bezemer M (2018) Effects of soil organisms on aboveground plant–insect interactions in the field: patterns, mechanisms and the role of methodology. Front Ecol Evol 6:106

    Article  Google Scholar 

  • Ibarra-Medina VA, Ferrera-Cerrato R, Alarcón A, Lara-Hernández ME, Valdez-Carrasco JM (2016) Isolation and screening of Trichoderma strains antagonistic to Sclerotinia sclerotiorum and Sclerotinia minor. Rev Mex Micol 31:53–63

    Google Scholar 

  • Macías-Rodríguez L, Guzmán-Gómez A, García-Juárez P, Contreras-Cornejo HA (2018) Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiol Ecol 94:fiy137

    Google Scholar 

  • Mithöfer A, Boland W (2008) Recognition of herbivory-associated molecular patterns. Plant Physiol 146:825–831

    Article  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Parrilli M, Sommaggio D, Tassini C, Di Marco S, Osti F, Ferrari R, Metruccio E, Masetti A, Burgio G (2019) The role of Trichoderma spp. and silica gel in plant defence mechanisms and insect response in vineyard. Bull Entomol Res 109:771–780

    Article  CAS  Google Scholar 

  • Ranum P, Peña-Rosas JP, Garcia-Casal MN (2017) Global maize production, utilization, and consumption. Ann N Y Acad Sci 1312:105–112

    Article  Google Scholar 

  • Rodriguez-Saona C, Chalmers JA, Raj S, Thaler JS (2005) Induced plant responses to multiple damagers: differential effects on an herbivore and its parasitoid. Oecologia 143:566–577

    Article  Google Scholar 

  • Singh BN, Dwivedi P, Sarma BK, Singh GS, Singh HB (2018) Trichoderma asperellum T42 reprograms tobacco for enhanced nitrogen utilization efficiency and plant growth when fed with N nutrients. Front Plant Sci 9:163

    Article  Google Scholar 

  • Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mithöfer A (2012) CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiol 159:1159–1175

    Article  CAS  Google Scholar 

  • Van Oosten VR, Bodenhausen N, Reymond P, Van Pelt JA, Van Loon LC, Dicke M, Pieterse CMJ (2008) Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Mol Plant Microbe Interact 21:919–930

    Article  Google Scholar 

  • Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808

    Article  CAS  Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320

    Article  Google Scholar 

  • Zhou S, Lou YR, Tzin V, Jander G (2015) Alteration of plant primary metabolism in response to insect herbivory. Plant Physiol 169:1488–1498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu-Salzman K, Luthe DS, Felton GW (2008) Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant Physiol 146:852–858

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Estefanía Saucedo, Wendy Méndoza and Franscisco Mora (IIES-UNAM) for their technical support in the field experiment, identification of insects and statistical analyses, respectively. The authors are indebted to the Consejo Nacional de Ciencía y Tecnología (CONACYT, México) for financial support of the research Projects 165738 and 179319. Authors do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hexon Angel Contreras-Cornejo.

Additional information

Communicated by L.R. Jaber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2343 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras-Cornejo, H.A., Viveros-Bremauntz, F., del-Val, E. et al. Alterations of foliar arthropod communities in a maize agroecosystem induced by the root-associated fungus Trichoderma harzianum. J Pest Sci 94, 363–374 (2021). https://doi.org/10.1007/s10340-020-01261-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-020-01261-3

Keywords

Navigation