Skip to main content

Advertisement

Log in

Combined nanoTiO2 and nitrogen effects on phytoplankton: a mesocosm approach

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The aquatic ecosystem is the ultimate sink for consumer and industrial waste discharge that contains nanometals such as titanium dioxide nanoparticle (n-TiO2). In this environment, nutrient availability and nanometals influence phytoplankton community structure and function. In a mesocosm experiment, we evaluated the interactive effect of n-TiO2 (48 mg L−1) and two nitrogen (N) levels (limited, LN; and replete, HN) on the phytoplankton community structure (biomass, species diversity and richness, algal species divisions), biochemical composition (carbohydrates, proteins, and lipids), and antioxidant response (peroxidase activity, POD). n-TiO2 decreased total phytoplankton biomass, and its combination with HN led to the highest decrease. Species diversity was not affected by N level, n-TiO2, and their interaction, while species richness decreased in combined n-TiO2 and HN treatment. All these recorded effects of n-TiO2 on the phytoplankton community structure were enhanced by increasing temperature over time. LN initially reduced phytoplankton carbohydrate content but increased by the presence of n-TiO2 and its interaction with N levels. Total protein and lipid content were not affected by n-TiO2 or its interaction with N levels. POD activity was increased by the interaction between n-TiO2 and the N levels tested. Our results indicate that the influence of n-TiO2 on the phytoplankton community was dependent on the concentration of N. Also, phytoplankton carbohydrate content and community structure varied with increasing water temperature. A few species thrived concerning biomass during exposure to the LN + n-TiO2 (Scenedesmus quadricauda, Coelastrum reticulum, and Microcystis sp.) and HN + n-TiO2 (Microcystis sp.) treatments. Members of the Chlorophyta were generally susceptible to the presence of n-TiO2 regardless of the N level. Thus, the presence of n-TiO2 in aquatic ecosystems can alter phytoplankton community structure and dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akter M, Sikder MT, Rahman MM, Ullah A, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16

    Article  CAS  Google Scholar 

  • APHA (1999) Standard methods for examination of water & wastewater, 20th edn. American Water Works Association/Water Environmental Federation, Washington D.C

  • Bellinger EG, Sigee DC (2010) Freshwater algae: identification and use as bioindicators, Wiley-Blackwell, Chichester, UK

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bundschuh M, Seitz F, Rosenfeldt RR, Schulz R (2016) Effects of nanoparticles in fresh waters: risks, mechanisms and interactions. Freshw Biol 61:2185–2196

    Article  Google Scholar 

  • Cardinale BJ, Bier R, Kwan C (2012) Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae. J Nanopart Res 14:913–913

    Article  Google Scholar 

  • Charitidis CA, Georgiou P, Koklioti MA, Trompeta A-F, Markakis V (2014) Manufacturing nanomaterials: from research to industry. Manufacturing Rev 1:11

    Article  Google Scholar 

  • Chen F, Xiao Z, Yue L, Wang J, Feng Y, Zhu X, Wang Z, Xing B (2019) Algae response to engineered nanoparticles: current understanding, mechanisms and implications. Environ Sci-Nano 6:1026–1042

    Article  CAS  Google Scholar 

  • Chia AM, Lombardi AT, Melão GG, Parrish CC (2015) Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae). Aquat Toxicol 160:87–95

    Article  CAS  Google Scholar 

  • Chia MA, Adelanwa MA, Ladan Z, Iortsuun DN, Adanyi SE, Stephen BJ (2012) Interactions of Ipomoea aquatica and Utricularia reflexa with phytoplankton densities in a small water body in northern Nigeria. Oceanol Hydrobiol Stud 41:39–47

    Article  Google Scholar 

  • Conan P, Søndergaard M, Kragh T, Thingstad F, Pujo-Pay M, Williams PJB, Markager S, Cauwet G, Borch NH, Evans D, Riemann B (2007) Partitioning of organic production in marine plankton communities: the effects of inorganic nutrient ratios and community composition on new dissolved organic matter. Limnol Oceanogr 52:753–765

    Article  CAS  Google Scholar 

  • Das P, Metcalfe CD, Xenopoulos MA (2014) Interactive effects of silver nanoparticles and phosphorus on phytoplankton growth in natural waters. Environ Sci Technol 48:4573–4580

    Article  CAS  Google Scholar 

  • Dauda S, Chia MA, Bako SP (2017) Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions. Aquat Toxicol 187:108–114

    Article  CAS  Google Scholar 

  • Davidson T, Ke Q, Costa M (2015) Selected molecular mechanisms of metal toxicity and carcinogenicity. In: Nordberg GF, Fowler BA, Nordberg M (eds) Handbook of toxicology of metals, 4th Edn. Elsevier, Amsterdam pp 173–196

  • Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Horikoshi S, Serpone N (eds) (2013) Microwaves in nanoparticle synthesis: fundamentals and applications. John Wiley & Sons, NY p 352

  • Hou J, Wang L, Wang C, Zhang S, Liu H, Li S, Wang X (2019) Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J Environ Sci (China) 75:40–53

    Article  Google Scholar 

  • Howarth RW, Marino R, Lane J, Cole JJ (1988) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance1. Limnol Oceanogr 33:669–687

    CAS  Google Scholar 

  • Interlandi SJ (2002) Nutrient-toxicant interactions in natural and constructed phytoplankton communities: results of experiments in semi-continuous and batch culture. Aquat Toxicol 61:35–51

    Article  CAS  Google Scholar 

  • Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239

    Article  CAS  Google Scholar 

  • Kahlon SK, Sharma G, Julka JM, Kumar A, Sharma S, Stadler FJ (2018) Impact of heavy metals and nanoparticles on aquatic biota. Environ Chem Lett 16:919–946

    Article  CAS  Google Scholar 

  • Liang SXT, Wong LS, Dhanapal ACTA, Djearamane S (2020) Toxicity of Metals and Metallic Nanoparticles on Nutritional Properties of Microalgae. Water. Air. Soil Pollut. 231:52. https://doi.org/10.1007/s11270-020-4413-5

  • Liefer JD, Garg A, Fyfe MH, Irwin AJ, Benner I, Brown CM, Follows MJ, Omta AW, Finkel ZV (2019) The macromolecular basis of phytoplankton C:N:P under nitrogen starvation. Front Microbiol 10:763

  • Liu D, Wong PTS, Dutka BJ (1973) Determination of carbohydrate in lake sediment by a modified phenol-sulfuric acid method. Water Res 7:741–746

  • Livanou E, Lagaria A, Psarra S, Lika K (2017) Dissolved organic matter release by phytoplankton in the context of the dynamic energy budget theory. Biogeosci Discuss:1–33. https://doi.org/10.5194/bg-2017-426:1-33

  • Lozovskii AV, Stolyarova IV, Prikhod’ko RV, Goncharuk VV (2010) Research of photocatalytic activity of the Ag/TiO2 catalysts in the reduction reaction of nitrate-ions in aqueous media. J Water Chem Techno+ 31:360–366

    Article  Google Scholar 

  • Luo Z, Wang Z, Li Q, Pan Q, Yan C (2010) Effects of titania nanoparticles on phosphorus fractions and its release in resuspended sediments under UV irradiation. J Hazard Mater 174:477–483

    Article  CAS  Google Scholar 

  • Marchello AE, Barreto DM, Lombardi AT (2018) Effects of titanium dioxide nanoparticles in different metabolic pathways in the freshwater microalga Chlorella sorokiniana (Trebouxiophyceae). Water Air Soil Pollut 229:1–11

    Article  CAS  Google Scholar 

  • Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS (2012) TiO2 nanoparticles are phototoxic to marine phytoplankton. PLoS One 7:e30321

    Article  CAS  Google Scholar 

  • Morana C, Sarmento H, Descy J-P, Gasol JM, Borges AV, Bouillon S, Darchambeau F (2014) Production of dissolved organic matter by phytoplankton and its uptake by heterotrophic prokaryotes in large tropical lakes. Limnol Oceanogr 59:1364–1375

    Article  CAS  Google Scholar 

  • Niinemets Ü, Kahru A, Mander Ü, Nõges P, Nõges T, Tuvikene A, Vasemägi A (2017) Interacting environmental and chemical stresses under global change in temperate aquatic ecosystems: stress responses, adaptation, and scaling. Reg Environ Chang 17:2061–2077

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan: Community Ecology Package

  • Peltomaa ET, Aalto SL, Vuorio KM, Taipale SJ (2017) The importance of phytoplankton biomolecule availability for secondary production. Front Ecol Evol 5:128

  • Pérez S, Ml F, Barceló D (2009) Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. Trac-Trend Anal Chem 28:820–832

  • R Core Team (2018) R: a language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna

  • Rasconi S, Winter K, Kainz MJ (2017) Temperature increase and fluctuation induce phytoplankton biodiversity loss - evidence from a multi-seasonal mesocosm experiment. Ecol Evol 7:2936–2946

  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78–78

  • Reddy JK, Suga T, Mannaerts GP, Lazarow PB, Subramani S (1996) Peroxisomes: biology and role in toxicology and disease. Ann N Y Acad Sci 804:1–795

  • Roessink I, Koelmans AA, Brock TCM (2008) Interactions between nutrients and organic micro-pollutants in shallow freshwater model ecosystems. Sci Total Environ 406:436 – 444 432

  • Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO ) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74:1180–1187. https://doi.org/10.1016/j.ecoenv.2011.03.006

  • Scherer PI, Raeder U, Geist J, Zwirglmaier K (2017) Influence of temperature, mixing, and addition of microcystin-LR on microcystin gene expression in Microcystis aeruginosa. Microbiologyopen 6:e00393

    Article  Google Scholar 

  • Scott JT, Doyle RD, Prochnow SJ, White JD (2008) Are watershed and lacustrine controls on planktonic N2 fixation hierarchically structured. Ecol Appl 18:805–819

    Article  Google Scholar 

  • Scott JT, Grantz EM (2013) N2 fixation exceeds internal nitrogen loading as a phytoplankton nutrient source in perpetually nitrogen-limited reservoirs. Freshw Sci 32:849–861

    Article  Google Scholar 

  • Shaban YA, El Maradny AA, Al Farawati RK (2016) Photocatalytic reduction of nitrate in seawater using C/TiO2 nanoparticles. J Photochem Photobiol A 328:114–121

    Article  CAS  Google Scholar 

  • Sharma VK (2009) Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment- a review. J Environ Sci Health A 44:1485–1495

  • Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A (2011) ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol in Vitro 25:231–241

  • Simonin M, Colman BP, Anderson SM, King RS, Ruis MT, Avellan A, Bergemann CM, Perrotta BG, Geitner NK, Ho M, de la Barrera B, Unrine JM, Lowry GV, Richardson CJ, Wiesner MR, Bernhardt ES (2018) Engineered nanoparticles interact with nutrients to intensify eutrophication in a wetland ecosystem experiment. Ecol Appl 28:1435–1449

  • Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196

  • Srivastava RK, Rahman Q, Kashyap MP, Lohani M, Pant AB (2011) Ameliorative effects of dimetylthiourea and N-acetylcysteine on nanoparticles induced cyto-genotoxicity in human lung cancer cells-A549. PLoS One 6:0025767

  • Sundararaghavan A, Mukherjee A, Suraishkumar GK (2019) Investigating the potential use of an oleaginous bacterium, Rhodococcus opacus PD630, for nano-TiO remediation. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-06388-0

  • Thornton DCO (2014) Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur J Phycol 49:20–46

  • Vicari T, Dagostim AC, Klingelfus T, Galvan GL, Monteiro PS, Pereira LdS, de Assis HCS, Cestari MM (2018) Co-exposure to titanium dioxide nanoparticles (NpTiO ) and lead at environmentally relevant concentrations in the neotropical fish species Hoplias intermedius. Toxicol Reports 5:1032–1043. https://doi.org/10.1016/j.toxrep.2018.09.001

  • Wang X-Q, Jiang H-B, Qiu B-S (2015) Effects of iron availability on competition between Microcystis and Pseudanabaena or Chlorella species. Eur J Phycol 50:260–270

    Article  CAS  Google Scholar 

  • Wu MJ, Bak T, Moffitt MC, Nowotny J, Bailey TD, Kersaitis C (2014) Photocatalysis of titanium dioxide for water disinfection: challenges and future perspectives. Intl J Photochem 2014:1–9

    Article  Google Scholar 

  • Xiao M, Li M, Reynolds CS (2018) Colony formation in the cyanobacterium Microcystis. Biol Rev 93:1399–1420

  • Yang T, Doudrick K, Westerhoff P (2013) Photocatalytic reduction of nitrate using titanium dioxide for regeneration of ion exchange brine. Water Res 47:1299–1307

  • Zhang J, Guo W, Li Q, Wang Z, Liu S (2018) The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environ Sci-Nano 5:2482–2499

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Ahii Chia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dauda, S., Gabriel, A.M., Idris, O.F. et al. Combined nanoTiO2 and nitrogen effects on phytoplankton: a mesocosm approach. J Appl Phycol 32, 3123–3132 (2020). https://doi.org/10.1007/s10811-020-02187-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02187-0

Keywords

Navigation