Skip to main content
Log in

Enhancement of sulfonated poly(ether ether ketone)-based proton exchange membranes doped with different ionic liquids cations

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, to balance the overall performance of SPEEK membrane, the imidazolium hydrogen sulfate (Im.HSO4), 1-methylimidazolium hydrogen sulfate (MI.HSO4), and 1-butyl-3-methylimidazolium hydrogen sulfate (BMI.HSO4) ionic liquids (ILs) were used as dopants in polymer matrix. A series of SPEEK/ionic liquid composite membranes were successfully fabricated by casting method and evaluated. Comparative studies showed that the membranes doped with 5 wt.% of MI.HSO4 or BMI.HSO4 ILs showed an increase in the proton conductivity of 50% and 30% at 80 °C, respectively, compared with the pristine SPEEK membrane. The proton exchange membrane fuel cell (PEMFC) performance demonstrated that the membrane doped with 5 wt.% of BMI.HSO4 IL (SBMI5) has the highest current density value and the highest power density without loss of performance as temperature increases. This result indicates that this membrane is promising for fuel cells application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Stambouli AB, Traversa E (2002) Fuel cells, an alternative to standard sources of energy. Renew Sust Energ Rev 6:295–304. https://doi.org/10.1016/S1364-0321(01)00015-6

    Article  Google Scholar 

  2. Ogungbemi E, Ijaodola O, Khatib FN, Wilberforce T, El Hassan Z, Thompson J, Ramadan M, Olabi AG (2019) Fuel cell membranes – Pros and cons. Energy 172:155–172. https://doi.org/10.1016/j.energy.2019.01.034

    Article  CAS  Google Scholar 

  3. Chen H, Zhao X, Zhang T, Pei P (2019) The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: a review. Energy Convers Manag 182:282–298. https://doi.org/10.1016/j.enconman.2018.12.049

    Article  CAS  Google Scholar 

  4. Zanchet L, da Trindade LG, Bariviera W, Borba KMN, Santos RDM, Paganin VA, de Oliveira CP, Ticianelli EA, Martini EMA, de Souza MO (2020) 3-Triethylammonium propane sulfonate ionic liquids for Nafion-based composite membranes for PEM fuel cells. J Mater Sci 55:6928–6941. https://doi.org/10.1007/s10853-020-04454-4

    Article  CAS  Google Scholar 

  5. Li P, Wu W, Liu J, Shi B, Du Y, Li Y, Wang J (2018) Investigating the nanostructures and proton transfer properties of Nafion-GO hybrid membranes. J Membr Sci 555:327–336. https://doi.org/10.1016/j.memsci.2018.03.066

    Article  CAS  Google Scholar 

  6. González-Guisasola C, Ribes-Greus A (2018) Dielectric relaxations and conductivity of cross-linked PVA/SSA/GO composite membranes for fuel cells. Polym Test 67:55–67. https://doi.org/10.1016/j.polymertesting.2018.01.024

    Article  CAS  Google Scholar 

  7. Elabd YA, Napadensky E (2004) Sulfonation and characterization of poly (styreneisobutylene-styrene) triblock copolymers at high ion-exchange capacities. Polymer 45:3037–3043. https://doi.org/10.1016/j.polymer.2004.02.061

    Article  CAS  Google Scholar 

  8. Carretta N, Tricoli V, Picchioni F (2000) Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation. J Membr Sci 166:189–197. https://doi.org/10.1016/S0376-7388(99)00258-6

    Article  CAS  Google Scholar 

  9. Parnian MJ, Rowshanzamir S, Gashoul F (2017) Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel cell applications. Energy 125:614–628. https://doi.org/10.1016/j.energy.2017.02.143

    Article  CAS  Google Scholar 

  10. Batalha JAFL, Dahmouche K, Sampaio RB, Gomes AS (2017) Structure and properties of new sPEEK/zirconia/protic ionic liquid membranes for fuel cell application. Macromol Mater Eng 302:1600301. https://doi.org/10.1002/mame.201600301

    Article  CAS  Google Scholar 

  11. Zhang HQ, Wu WJ, Wang JT (2015) Enhanced anhydrous proton conductivity of polymer electrolyte membrane enabled by facile ionic liquid-based hoping pathways. J Membr Sci 476:136–147. https://doi.org/10.1016/j.memsci.2014.11.033

    Article  CAS  Google Scholar 

  12. Zhou SH, Kim J, Kim D (2010) Cross-linked poly(ether ether ketone) membranes with pendant sulfonic acid groups for fuel cell applications. J Membr Sci 348:319–325. https://doi.org/10.1016/j.memsci.2009.11.015

    Article  CAS  Google Scholar 

  13. Wu G, Lin S-J, Hsu I-C, Su J-Y, Chen DW (2019) Study of high performance sulfonated polyether ether ketone composite electrolyte membranes. Polymers 11:1177. https://doi.org/10.3390/polym11071177

    Article  CAS  PubMed Central  Google Scholar 

  14. Parnian MJ, Rowshanzamir S, Prasad AK, Advani SG (2018) High durability sulfonated poly (ether ether ketone)-ceria nanocomposite membranes for proton exchange membrane fuel cell applications. J Membr Sci 556:12–22. https://doi.org/10.1016/j.memsci.2018.03.083

    Article  CAS  Google Scholar 

  15. Yi S, Zhang F, Wei L, Huang C, Zhang H (2011) Anhydrous elevated-temperature polymer electrolyte membranes based on ionic liquids. J Membr Sci 366:349–355. https://doi.org/10.1016/j.memsci.2010.10.031

    Article  CAS  Google Scholar 

  16. Li YX, Zhang MS, Wang XY, Zhao LH (2016) Anhydrous conducting composite membranes composed of SPEEK/silica/ionic liquids for high-temperature proton exchange. Electrochim Acta 222:1308–1315. https://doi.org/10.1016/j.electacta.2016.11.106

    Article  CAS  Google Scholar 

  17. Che Q, He R, Yang J, Feng L, Savinell RF (2010) Phosphoric acid doped high temperature proton exchange membranes based on sulfonated polyetheretherketone incorporated with ionic liquids. Electrochem Commun 12:647–649. https://doi.org/10.1016/j.elecom.2010.02.021

    Article  CAS  Google Scholar 

  18. Che Q, Zhou L, Wang J (2015) Fabrication and characterization of phosphoric acid doped imidazolium ionic liquid polymer composite membranes. J Mol Liq 206:10–18. https://doi.org/10.1016/j.molliq.2015.01.054

    Article  CAS  Google Scholar 

  19. Malik RS, Verma P, Choudhary V (2015) A study of new anhydrous, conducting membranes based on composites of aprotic ionic liquid and cross-linked SPEEK for fuel cell application. Electrochim Acta 152:352–359. https://doi.org/10.1016/j.electacta.2014.11.167

    Article  CAS  Google Scholar 

  20. da Trindade LG, Becker MR, Celso F, Petzhold CL, Martini EMA, de Souza RF (2016) Modification of sulfonated poly(ether ether ketone) membranes by impregnation with the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate for proton exchange membrane fuel cell applications. Polym Eng Sci 56:1037–1044. https://doi.org/10.1002/pen.24334

    Article  CAS  Google Scholar 

  21. Wang X, Jin M, Li Y, Zhao L (2017) The influence of various ionic liquids on the properties of SPEEK membrane doped with mesoporous silica. Electrochim Acta 257:290–300. https://doi.org/10.1016/j.electacta.2017.10.098

    Article  CAS  Google Scholar 

  22. Liu DS, Ashcraft JN, Mannarino MM, Silberstein MN, Argun AA, Rutledge GC, Boyce MC, Hammond PT (2013) Spray layer-by-layer electrospun composite proton exchange membranes. Adv Funct Mater 23:3087–3095. https://doi.org/10.1002/adfm.201202892

    Article  CAS  Google Scholar 

  23. Che Q, Li Z, Pan B, Duan X, Jia T, Liu L (2019) Fabrication of layered membrane electrolytes with spin coating technique as anhydrous proton exchange membranes. J Colloid Interf Sci 555:722–730. https://doi.org/10.1016/j.jcis.2019.08.034

    Article  CAS  Google Scholar 

  24. Lide RD (2005) Dissociation constants of inorganic acids and bases in CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  25. Liew C-W, Ramesh S, Arof AK (2014) A novel approach on ionic liquid-based poly (vinyl alcohol) proton conductive polymer electrolytes for fuel cell applications. Int J Hydrog Energy 39:2917–2928. https://doi.org/10.1016/j.ijhydene.2013.07.092

    Article  CAS  Google Scholar 

  26. da Trindade LG, Pereira EC (2017) SPEEK/zeolite/ionic-liquid anhydrous polymer membranes for fuel-cell applications. Eur J Inorg Chem 17:2369–2376. https://doi.org/10.1002/ejic.201601559

    Article  CAS  Google Scholar 

  27. Mikhailenko SD, Robertson GP, Guiver MD, Kaliaguine S (2006) Properties of PEMs based on cross-linked sulfonated poly(ether ether ketone). J Membr Sci 285:306–316. https://doi.org/10.1016/j.memsci.2006.08.036

    Article  CAS  Google Scholar 

  28. da Trindade LG, Borba KMN, Zanchet L, Lima DW, Trench AB, Rey F, Diaz U, Longo E, Bernardo-Gusmão K, Martini EMA (2019) SPEEK-based proton exchange membranes modified with MOF-encapsulated ionic liquid. Mater Chem Phys 236:121792. https://doi.org/10.1016/j.matchemphys.2019.121792

    Article  CAS  Google Scholar 

  29. Cammarata L, Kazarian S, Salter P, Welton T (2001) Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 3:5192–5200. https://doi.org/10.1039/B106900D

    Article  CAS  Google Scholar 

  30. Zhao C, Lin H, Shao K, Li X, Ni H, Wang Z, Na H (2006) Block sulfonated poly(ether ether ketone)s (SPEEK) ionomers with high ion-exchange capacities for proton exchange membranes. J Power Sources 162:1003–1009. https://doi.org/10.1016/j.jpowsour.2006.07.055

    Article  CAS  Google Scholar 

  31. da Trindade LG, Zanchet L, Martins PC, Borba KMN, Santos RDM, Paiva RS, Vermeersch LAF, Ticianelli EA, de Souza MO, Martini EMA (2019) The influence of ionic liquids cation on the properties of sulfonated poly (ether ether ketone)/polybenzimidazole blends applied in PEMFC. Polymer 179:121723. https://doi.org/10.1016/j.polymer.2019.121723

    Article  CAS  Google Scholar 

  32. Cao J, Su W, Wu Z, Kitayama T, Hatada K (1994) Synthesis and properties of poly(ether ether ketone)-poly(ether sulfone) block copolymers. Polymer 35:3549–3556. https://doi.org/10.1016/0032-3861(94)90922-9

    Article  CAS  Google Scholar 

  33. Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25:1463–1502. https://doi.org/10.1016/S0079-6700(00)00032-0

    Article  CAS  Google Scholar 

  34. Shirini F, Khaligh NG, Akbari-Dadamahaleh S (2012) Preparation,characterization and use of 1,3-disulfonic acid imidazolium hydro-gen sulfate as an efficient, halogen-free and reusable ionic liquidcatalyst for the trimethylsilyl protection of hydroxyl groups andprotection of the obtained trimethylsilanes. J Mol Catal A Chem 365:15–23. https://doi.org/10.1016/j.molcata.2012.08.00

    Article  CAS  Google Scholar 

  35. Chaker Y, Ilikti H, Debdab M, Moumene T, Belarbi E, WadouachiA AO, Khelifa B, Bresson S (2016) Synthesis and character-ization of 1-(hydroxyethyl)-3-methylimidazolium sulfate and chlo-ride ionic liquids. J Mol Struct 1113:182–190. https://doi.org/10.1016/j.molstruc.2016.02.017

    Article  CAS  Google Scholar 

  36. Zeng Q, Zhang J, Cheng H, Chen L, Qi Z (2017) Corrosion prop-erties of steel in 1-butyl-3-methylimidazolium hydrogen sulfateionic liquid systems for desulfurization application. RSC Adv 7:48526–48536. https://doi.org/10.1039/c7ra09137k

    Article  CAS  Google Scholar 

  37. Ramasamy R (2015) Vibrational spectroscopic studies of imidazole. Armen J Phys 8:51–55

    CAS  Google Scholar 

  38. Chakrabarty T, Kumar M, Rajesh KP, Shahi VK, Natarajan TS (2010) Nano-fibrous sulfonated poly (ether ether ketone) membrane for selective electro-transport of ions. Sep Purif Technol 75:174–182. https://doi.org/10.1016/j.seppur.2010.07.019

    Article  CAS  Google Scholar 

  39. Banerjee S, Kar KK (2016) Superior water retention, ionic conductivity and thermal stability of sulfonated poly ether ether ketone/polypyrrole/aluminum phosphate nanocomposite based polymer electrolyte membrane. J Environ Chem Eng 4:299–310. https://doi.org/10.1016/j.jece.2015.11.033

    Article  CAS  Google Scholar 

  40. Song M, Lu X, Li Z, Liu G, Yin X, Wang Y (2016) Compatible ionic crosslinking composite membranes based on SPEEK and PBI for high temperature proton exchange membranes. Int J Hydrog Energy 41:12069–12081. https://doi.org/10.1016/j.ijhydene.2016.05.227

    Article  CAS  Google Scholar 

  41. Zawodzinski TA, Davey J, Valerio J, Gottesfeld S (1995) The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes. Electrochim Acta 40:297–302. https://doi.org/10.1016/0013-4686(94)00277-8

    Article  CAS  Google Scholar 

  42. Zhai S, Dai W, Lin J, He S, Zhang B, Chen L (2019) Enhanced proton conductivity in sulfonated poly (ether ether ketone) membranes by incorporating sodium dodecyl benzene sulfonate. Polymers 11:203. https://doi.org/10.3390/polym11020203

    Article  CAS  PubMed Central  Google Scholar 

  43. Steffy NJ, Parthiban V, Sahu AK (2018) Uncovering Nafion-multiwalled carbon nanotube hybrid membrane for prospective polymer electrolyte membrane fuel cell under low humidity. J Membr Sci 563:65–74. https://doi.org/10.1016/j.memsci.2018.05.051

    Article  CAS  Google Scholar 

  44. Chun JH, Kim SG, Lee JY, Hyeon DH, Chun B-H, Kim SH, Park KT (2013) Crosslinked sulfonated poly (arylene ether sulfone)/silica hybrid membranes for high temperature proton exchange membrane fuel cells. Renew Energy 51:22–28. https://doi.org/10.1016/j.renene.2012.09.005

    Article  CAS  Google Scholar 

  45. Che Q, Zhu Z, Chen N, Zhai X (2015) Methylimidazolium group – modified polyvinyl chloride (PVC) doped with phosphoric acid for high temperature proton exchange membranes. Mater Design 87:1047–1055. https://doi.org/10.1016/j.matdes.2015.08.092

    Article  CAS  Google Scholar 

  46. Sahin A (2018) The development of Speek/Pva/Teos blend membrane for proton exchange membrane fuel cells. Electrochem Acta 271:127–136. https://doi.org/10.1016/j.electacta.2018.03.145

    Article  CAS  Google Scholar 

  47. Kim Y, Ketpang K, Jaritphun S, Park JS, Shanmugam S (2015) A polyoxometalate coupled graphene oxide–Nafion composite membrane for fuel cellsoperating at low relative humidity. J Mater Chem A 3:8148–8155. https://doi.org/10.1039/C5TA00182J

    Article  CAS  Google Scholar 

Download references

Funding

The support of this research by CAPES (Finance Code 001), FAPESP (#2013/07296-2), and CNPq is gratefully acknowledged. The authors also acknowledgment the company Victrex for the grant of PEEK polymer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Chaves Pereira.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Trindade, L.G., Zanchet, L., Souza, J.C. et al. Enhancement of sulfonated poly(ether ether ketone)-based proton exchange membranes doped with different ionic liquids cations. Ionics 26, 5661–5672 (2020). https://doi.org/10.1007/s11581-020-03684-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03684-5

Keywords

Navigation