Skip to main content
Log in

Some Remarks About Virtual Annihilation Interactions in Relativistic n-Body Wave Equations in QED

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The existence of entities consisting of electrons and positrons was predicted in 1946 by J. A. Wheeler and he called them polyelectrons. The simplest bound-state is called positronium (Ps, eβˆ’e+). Wheeler speculated that two Ps atoms may combine to form the di-positronium molecule (Ps2, eβˆ’e+eβˆ’e+) which was finally observed in 2007. He also conjectured the existence of larger systems such as (Ps3, eβˆ’e+eβˆ’e+eβˆ’e+). In a previous work the author has formulated the relativistic wave equations in quantum electrodynamics (QED) for a system consisting of n fermions and antifermions of equal masses where n can be any natural number and the equations contain relativistic effects up to the order of O(Ξ±4), Ξ± is the coupling. The kernels of the n-body wave equations in QED include one-photon exchange and virtual annihilation interactions. The latter interactions occur among pairs of fermions and antifermions. The equations have the SchrΓΆdinger non relativistic limit. In this manuscript, some points have been provided with respect to the virtual annihilation interactions for the few-body systems in addition to the particular cases of five- (eβˆ’e+eβˆ’e+eβˆ’) and six-body (eβˆ’e+eβˆ’e+eβˆ’e+) QED systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Emami-Razavi, M.: . Rev. Phys. A 77, 042104 (2008)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  2. Darewych, J.W.: Annales de la Fondation Louis de Broglie (Paris).23,15 (1998)

  3. Emami-Razavi, M.: . Appl, J. Theor. Phys. 9, 1–6 (2015)

    ArticleΒ  Google ScholarΒ 

  4. Mohorovicic, S.: . Astron. Nachr. 253, 94 (1934)

    ArticleΒ  ADSΒ  Google ScholarΒ 

  5. Deutsch, M.: . Phys. Rev. 82, 455 (1951)

    ArticleΒ  ADSΒ  Google ScholarΒ 

  6. Greiner, W., Reinhard, J.: Quantum Electrodynamics, 3rd. Springer, Berlin (2003)

    BookΒ  Google ScholarΒ 

  7. Wheeler, J.A.: . Ann. NY Acad. Sci. 48, 219 (1946)

    ArticleΒ  ADSΒ  Google ScholarΒ 

  8. Mills, A.P. Jr.: . Phys. Rev. Lett. 46, 717 (1981)

    ArticleΒ  ADSΒ  Google ScholarΒ 

  9. Fleischer, F., et al.: . Phys. Rev. Lett. 96, 063401 (2006)

    ArticleΒ  ADSΒ  Google ScholarΒ 

  10. Cassidy, D.B., Mills, A.P. Jr.: . Nature (London) 449, 195 (2007)

    ArticleΒ  ADSΒ  Google ScholarΒ 

  11. Salpeter, E.E., Bethe, H.A.: . Phys. Rev. 84, 1232 (1951)

    ArticleΒ  MathSciNetΒ  ADSΒ  Google ScholarΒ 

  12. Emami-Razavi, M.: . Phys. Letters B 640, 285 (2006)

    ArticleΒ  MathSciNetΒ  ADSΒ  Google ScholarΒ 

  13. Emami-Razavi, M.: . Rev, Phys. D 77, 045025 (2008)

    ArticleΒ  MathSciNetΒ  Google ScholarΒ 

  14. Emami-Razavi, M., Bergeron, N., Darewych, J.W.: . Int. J. Modern Phys. E 21, 1250091 (2012)

    ArticleΒ  ADSΒ  Google ScholarΒ 

  15. Cassidy, D.B.: . Eur. Phys. J. D 72, 53 (2018)

    ArticleΒ  ADSΒ  Google ScholarΒ 

  16. Emami-Razavi, M., Bergeron, N. , Darewych, J.W. : . J. Phys. G: Nucl. Part. Phys. 37, 025007 (2010)

    ArticleΒ  ADSΒ  Google ScholarΒ 

  17. Emami-Razavi, M. , Kowalski, M., Asgary, S.: . Int. J. Theor Phys 57, 29893004 (2018)

    Google ScholarΒ 

  18. Emami-Razavi, M., Kowalski, M., Asgary, S.: . Int J Theor Phys 59, 641 (2019). https://doi.org/10.1007/s10773-019-04329-8

    ArticleΒ  Google ScholarΒ 

  19. Terekidi, A.G., Darewych, J.W.: . J. Math. Phys. 95, 1474 (2004)

    ArticleΒ  ADSΒ  Google ScholarΒ 

  20. Michishio, K., Kanai, T., Kuma, S., Azuma, T., Wada, K., Mochizuki, I., Hyodo, T., Yagishita, A., Nagashima, Y.: . Nature communications 7, 11060 (2016)

    ArticleΒ  ADSΒ  Google ScholarΒ 

  21. Rich, A.: . Rev Mod. Phys. 53, 127 (1981)

    ArticleΒ  ADSΒ  Google ScholarΒ 

  22. Bubin, S., Stanke, M., Kedziera, D., Adamowicz, L.: . Phys. Rev A 062504, 75 (2007)

    Google ScholarΒ 

  23. Jean, Y.C., Mallon, P.E., Schrader, D.M.: Principles and applications of positron & positronium chemistry, World Scientific, pp. 17–36 (2003)

  24. Mitroy, J., Bubin, S., Horiuchi, W., Suzuki, Y., Adamowicz, L., Cencek, W., Szalewicz, K., Komasa, J., Blume, D., Varga, K.: . Rev. Mod. Phys. 85, 693–749 (2013)

    ArticleΒ  ADSΒ  Google ScholarΒ 

  25. Emami-Razavi, M., Kowalski, M.: . Phys. Rev. D 045006, 76 (2007)

    Google ScholarΒ 

  26. Emami-Razavi, M.: Int. J. Theor. Phys. https://doi.org/10.1007/s10773-020-04416-1 (2020)

  27. Terekidi, A.G., Darewych, J.W., Horbatsh, M.: . Can. J. Phys. 85, 813 (2007)

    ArticleΒ  ADSΒ  Google ScholarΒ 

  28. Zarei, A., Forghan, B., Takook, M.V.: . Int. J. Theor. Phys. 50, 2466–2476 (2011)

    ArticleΒ  Google ScholarΒ 

  29. Zarei, A., Forghan, B., Takook, M.V.: . Int. J. Theor. Phys 51, 3676–3677 (2012)

    ArticleΒ  Google ScholarΒ 

  30. Emami-Razavi, M., Asgary, S. Int. J. Theor. Phys. 57, 238–249 (2018)

    ArticleΒ  Google ScholarΒ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Emami-Razavi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

It is quite instructive to explicitly write the relativistic wave equations and their non-relativistic limits both in momentum and coordinate space for the few-body systems (two-, three-, and four-body), in addition to more difficult cases, such as the five-body (eβˆ’e+eβˆ’e+eβˆ’) or six-body systems (Ps3,eβˆ’e+eβˆ’e+eβˆ’e+), in order to better understand how to apply the general formula for the relativistic n-fermion wave equations, namely (25), and its non relativistic limit (see (31)).

a) :

The two-body systems (such as positronium, eβˆ’e+):

We can choose the following trial state for the two-body problem (eβˆ’e+) as the following expression based on the eq.Β (16)

$$ |\psi_{2}\rangle =\underset{s_{1}s_{2}}{\sum }\int d^{3}p_{1}d^{3}p_{2}~F_{s_{1}s_{2}}(\mathbf{p}_{1},\mathbf{p}_{2})~b^{\dagger }(\mathbf{p}_{1},s_{1})d^{\dagger }(\mathbf{p} _{2},s_{2})|0\rangle , $$
(75)

Therefore, we obtain the following wave equation (n = 2 in (25)):

$$ \begin{array}{@{}rcl@{}} F_{s_{1}s_{2}}(\mathbf{p}_{1},\mathbf{p}_{2})~[\omega_{p_{1}}+\omega_{p_{2}} -E]\!&=&\!\frac{m^{2}e^{2}}{2(2\pi )^{3}}\underset{s_{1}^{\prime }s_{2}^{\prime }}{\sum }\int d^{3}p_{1}^{\prime }d^{3}p_{2}^{\prime }~F_{s_{1}^{\prime }s_{2}^{\prime }}(\mathbf{p}_{1}^{\prime },\mathbf{p}_{2}^{\prime })\frac{\delta^{3}(\mathbf{p}_{1}^{\prime }+\mathbf{p} _{2}^{\prime }-\mathbf{p}_{1}-\mathbf{p}_{2})}{\sqrt{\omega_{p_{1}^{\prime }}\omega_{p_{2}^{\prime }}\omega_{p_{1}}\omega_{p2}}} \\ &&\!\times\! \left[ \mathcal{M}_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}^{ \text{\textit{Attractive} }}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p} _{1}^{\prime },\mathbf{p}_{2}^{\prime }) - \mathcal{M}_{s_{1}s_{2}s_{1}^{ \prime }s_{2}^{\prime }}^{Annihilation}(\mathbf{p}_{1}, \mathbf{p}_{2},\mathbf{p}_{1}^{\prime },\mathbf{p}_{2}^{\prime })\right] ,\\ \end{array} $$
(76)
$$ \begin{array}{@{}rcl@{}} {}\mathcal{M}_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}^{Attractive}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{1}^{\prime }, \mathbf{p}_{2}^{\prime }) \!&=&\!\overline{u}(\mathbf{p}_{1}^{\prime },s_{1}^{\prime })\gamma^{\mu }u(\mathbf{p}_{1},s_{1})~[D_{\mu \nu }(\omega_{p_{1}^{\prime }}-\omega_{p_{1}},\mathbf{p}_{1}^{\prime }-\mathbf{p}_{1}) \\ &&\!+D_{\mu \nu }(\omega_{p_{2}^{\prime }}-\omega_{p_{2}},\mathbf{p}_{2}^{\prime } - \mathbf{p}_{2})]~\overline{v}\left( \mathbf{p}_{2},s_{2}\right) \gamma^{\nu }v\left( \mathbf{p}_{2}^{\prime },s_{2}^{\prime }\right) , \end{array} $$
(77)
$$ \begin{array}{@{}rcl@{}} \mathcal{M}_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}^{Annihilation}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{1}^{\prime }, \mathbf{p}_{2}^{\prime }) &=&\overline{u}(\mathbf{p}_{1}^{\prime },s_{1}^{\prime })\gamma^{\mu }v\left( \mathbf{p}_{2}^{\prime },s_{2}^{\prime }\right) ~[D_{\mu \nu }(\omega_{p_{1}^{\prime }}+\omega _{p_{2}^{\prime }},\mathbf{p}_{1}^{\prime }+\mathbf{p}_{2}^{\prime }) \\ &&+D_{\mu \nu }(-\omega_{p_{1}}-\omega_{p_{2}},-\mathbf{p}_{1}-\mathbf{p}_{2})]\\ &&\times \overline{v}\left( \mathbf{p}_{2},s_{2}\right) \gamma^{\nu }u(\mathbf{p}_{1},s_{1}). \end{array} $$
(78)

For the positronium case the above equations were derived previously by Terekidi and Darewych [19]. One should note that there is no repulsive term for the (Ps: eβˆ’e+) system. They demonstrated [19] that the results for the bound state energies (including virtual annihilation) agree with earlier calculation of positronium (Ps) to the order of O(Ξ±4) for all states.

For the non-relativistic limit of the wave (76) of (eβˆ’e+) we have

$$ \begin{array}{@{}rcl@{}} &&F_{s_{1}s_{2}}(\mathbf{p}_{1},\mathbf{p}_{2})~\left[ \frac{\mathbf{p} _{1}^{2}}{2m}+\frac{\mathbf{p}_{2}^{2}}{2m}-\epsilon \right] \\ &=&\frac{e^{2}}{(2\pi )^{3}} \underset{s_{1}^{\prime }s_{2}^{\prime }}{\sum }\int d^{3}p_{1}^{\prime }d^{3}p_{2}^{\prime }~F_{s_{1}^{\prime }s_{2}^{\prime }}(\mathbf{p}_{1}^{\prime },\mathbf{p}_{2}^{\prime })~\delta^{3}(\mathbf{p}_{1}^{\prime }+\mathbf{p}_{2}^{\prime }-\mathbf{p}_{1}- \mathbf{p}_{2})\\&&\times\left[ \frac{\delta_{s_{1}s_{1}^{\prime }}\delta _{s_{2}s_{2}^{\prime }}}{\mathbf{|p}_{1}^{\prime }\mathbf{-p}_{1}\mathbf{|}^{2}}-\frac{A_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}}{4m^{2}}\right] , \end{array} $$
(79)

where πœ– = E βˆ’β€‰2m.

By using the Fourier transformation (30), in the coordinate-space, the above equation, namely (79), becomes as the following expression:

$$ \begin{array}{@{}rcl@{}} &&\left[ -\frac{1}{2m}{{\sum}_{i=1}^{2}{\nabla_{i}^{2}}}-\frac{\alpha }{|\mathbf{x }_{1}-\mathbf{x}_{2}|}-\epsilon \right] {\Psi}_{s_{1}s_{2}}(\mathbf{x}_{1}, \mathbf{x}_{2})\\ && +\frac{\pi \alpha }{m^{2}} \delta (\mathbf{x}_{1}-\mathbf{x} _{2}){\sum}_{{s_{1}}^{\prime }{s_{2}}^{\prime }}A_{{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}}{\Psi}_{{s_{1}^{\prime }s_{2}^{\prime }}}(\mathbf{x}_{1}, \mathbf{x}_{2}) =0, \end{array} $$
(80)

where the coupling Ξ± = e2/4Ο€ defines the fine-structure constant. In the above equation the term that contains the factor Ξ΄(x1 βˆ’x2) describes the virtual annihilation interaction between the fermion (such as eβˆ’) and antifermion (such as e+).

b) :

The three-body systems (such as positronium negative ion, Psβˆ’,eβˆ’e+eβˆ’):

For the positronium negative ion, namely (Psβˆ’: eβˆ’e+eβˆ’), using the trial state (17) we can write

$$ |\psi_{3}\rangle =\underset{s_{1}s_{2}s_{3}}{\sum }\int d^{3}p_{1}d^{3}p_{2}d^{3}p_{3}~F_{s_{1}s_{2}s_{3}}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3})b^{\dagger }(\mathbf{p}_{1},s_{1})d^{\dagger }(\mathbf{p}_{2},s_{2})b^{\dagger }(\mathbf{p}_{3},s_{3})|0\rangle , $$
(81)

thereupon, the Psβˆ’ wave equation can be written as the following expression (n = 3 in (25):

$$ \begin{array}{@{}rcl@{}} &&F_{s_{1}s_{2}s_{3}}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3})[\omega_{p_{1}}+\omega_{p_{2}}+\omega_{p_{3}}-E] \\ &=&\frac{m^{2}e^{2}}{2(2\pi )^{3}}\underset{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }}{\sum }\int d^{3}p_{1}^{\prime }d^{3}p_{2}^{\prime }d^{3}p_{3}^{\prime }~F_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }}(\mathbf{p}_{1}^{\prime },\mathbf{p}_{2}^{\prime },\mathbf{p}_{3}^{\prime }) \\ &&\times\left\{\left[ \mathcal{M}_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}^{Attractive}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p} _{1}^{\prime },\mathbf{p}_{2}^{\prime })-\mathcal{M}_{s_{1}s_{2}s_{1}^{ \prime }s_{2}^{\prime }}^{Annihilation}(\mathbf{p}_{1}, \mathbf{p}_{2},\mathbf{p}_{1}^{\prime },\mathbf{p}_{2}^{\prime })\right] \delta_{s_{3}^{\prime }s_{3}}\right.\\ &&\times\delta^{3}(\mathbf{p}_{3}^{\prime }-\mathbf{p} _{3})\frac{\delta^{3}(\mathbf{p}_{1}^{\prime }+\mathbf{p}_{2}^{\prime }- \mathbf{p}_{1}-\mathbf{p}_{2})}{\sqrt{\omega_{p_{1}^{\prime }}\omega_{p_{2}^{\prime }}\omega_{p_{1}}\omega_{p_{2}}}} \\ &&+\left[ \mathcal{M}_{s_{2}s_{3}s_{2}^{\prime }s_{3}^{\prime }}^{Attractive}(\mathbf{p}_{2},\mathbf{p}_{3},\mathbf{p}_{2}^{\prime },\mathbf{p}_{3}^{\prime })-\mathcal{M}_{s_{2}s_{3}s_{2}^{\prime }s_{3}^{\prime }}^{Annihilation}(\mathbf{p}_{2},\mathbf{p}_{3},\mathbf{p}_{2}^{\prime },\mathbf{p}_{3}^{\prime })\right] \delta_{s_{1}^{\prime }s_{1}}\\ &&\times \delta^{3}(\mathbf{p}_{1}^{\prime }-\mathbf{p}_{1}) \frac{\delta^{3}(\mathbf{p}_{2}^{\prime }+\mathbf{p}_{3}^{\prime }-\mathbf{p }_{2}-\mathbf{p}_{3})}{\sqrt{\omega_{p_{2}^{\prime }}\omega_{p_{3}^{\prime }}\omega_{p_{2}}\omega_{p_{3}}}} \\ && \left. -\mathcal{M}_{s_{1}s_{3}s_{1}^{\prime }s_{3}^{\prime }}^{Repulsive}(\mathbf{p}_{1},\mathbf{p}_{3},\mathbf{p}_{1}^{\prime },\mathbf{ p}_{3}^{\prime })~\delta_{s_{2}^{\prime }s_{2}}~\delta^{3}(\mathbf{p}_{2}^{\prime }-\mathbf{p}_{2})\frac{\delta^{3}(\mathbf{p}_{1}^{\prime }+ \mathbf{p}_{3}^{\prime }-\mathbf{p}_{1}-\mathbf{p}_{3})}{\sqrt{\omega_{p_{1}^{\prime }}\omega_{p_{3}^{\prime }}\omega_{p_{1}}\omega_{p_{3}}}} \right\}. \end{array} $$
(82)

The expressions for \({\mathscr{M}}_{s_{j}s_{k}s_{j}^{\prime }s_{k}^{\prime }}^{Attractive}\), \({\mathscr{M}}_{s_{j}s_{k}s_{j}^{\prime }s_{k}^{\prime }}^{Repulsive}\), and \({\mathscr{M}}_{s_{j}s_{k}s_{j}^{\prime }s_{k}^{\prime }}^{Annihilation}\) have been provided before in (22), (23) and (24 ), respectively.

In the non-relativistic limit, in the momentum space the (82) becomes as the following expression:

$$ \begin{array}{@{}rcl@{}} &&F_{s_{1}s_{2}s_{3}}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3})\left[ \frac{\mathbf{p}_{1}^{2}}{2m}+\frac{\mathbf{p}_{2}^{2}}{2m}+\frac{\mathbf{p} _{3}^{2}}{2m}-\epsilon_{3}\right] \\ &=&\frac{e^{2}}{(2\pi )^{3}}\underset{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }}{\sum }\int d^{3}p_{1}^{\prime }d^{3}p_{2}^{\prime }d^{3}p_{3}^{\prime }~F_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }}(\mathbf{p}_{1}^{\prime },\mathbf{p}_{2}^{\prime },\mathbf{p}_{3}^{\prime }) \\ &&\times\left[\left( \frac{\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}s_{2}^{\prime }}\delta_{s_{3}^{\prime }s_{3}}}{\mathbf{|p}_{1}^{\prime }\mathbf{-p}_{1}\mathbf{|}^{2}}-\frac{1}{4m^{2}} ~A_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}\delta_{s_{3}^{\prime }s_{3}}\right) ~\delta^{3}(\mathbf{p}_{3}^{\prime }-\mathbf{p}_{3})\delta^{3}(\mathbf{p}_{1}^{\prime }+\mathbf{p}_{2}^{\prime }-\mathbf{p}_{1}- \mathbf{p}_{2})\right. \\ &&+\left( \frac{\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}s_{2}^{\prime }}\delta_{s_{3}^{\prime }s_{3}}}{\mathbf{|p}_{2}^{\prime }\mathbf{-p}_{2} \mathbf{|}^{2}}-\frac{1}{4m^{2}}~A_{s_{2}s_{3}s_{2}^{\prime }s_{3}^{\prime }}\delta_{s_{1}^{\prime }s_{1}}\right) ~\delta^{3}(\mathbf{p}_{1}^{\prime }-\mathbf{p}_{1})\delta^{3}(\mathbf{p}_{2}^{\prime }+\mathbf{p}_{3}^{\prime }-\mathbf{p}_{2}-\mathbf{p}_{3}) \\ &&\left. -\frac{1}{\mathbf{|p}_{1}^{\prime }\mathbf{-p}_{1}\mathbf{|}^{2}}~\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}s_{2}^{\prime }}\delta_{s_{3}^{\prime }s_{3}}~\delta^{3}(\mathbf{p}_{2}^{\prime }-\mathbf{p}_{2})\delta^{3}(\mathbf{p}_{1}^{\prime }+\mathbf{p}_{3}^{\prime }-\mathbf{p}_{1}-\mathbf{p}_{3})\right], \end{array} $$
(83)

where we let πœ–3 = E βˆ’β€‰3m. In the coordinate space, this becomes the following equation:

$$ \begin{array}{@{}rcl@{}} &&\left\{-\frac{1}{2m}\left( {{\sum}_{i=1}^{3}{\nabla_{i}^{2}}}\right) -\epsilon_{3}-\frac{\alpha }{|\mathbf{x}_{1}-\mathbf{x}_{2}|}-\frac{\alpha }{|\mathbf{x}_{2}-\mathbf{x}_{3}|}+\frac{\alpha }{|\mathbf{x}_{1}-\mathbf{x} _{3}|}\right\}{\Psi}_{s_{1}s_{2}s_{3}}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x} _{3})= \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{1}-\mathbf{x}_{2})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }}{\sum }A_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}\delta_{s_{3}^{\prime }s_{3}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x} _{3}) \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{2}-\mathbf{x}_{3})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }}{\sum }A_{s_{2}s_{3}s_{2}^{\prime }s_{3}^{\prime }}\delta_{s_{1}^{\prime }s_{1}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3}), \end{array} $$
(84)

where we have the coupling Ξ± = e2/4Ο€. On the right hand side of the (84), the virtual annihilation terms for the Psβˆ’ system can be noted (the terms that contain Ξ΄(x1 βˆ’x2) and Ξ΄(x2 βˆ’x3)). As said before, they are really relativistic effects that contribute in the order of O(Ξ±)4.

  • c) The four-body systems (such as positronium molecule, Ps2, eβˆ’e+eβˆ’e+):

For the positronium molecule (eβˆ’e+eβˆ’e+), by choosing the following trial state (n = 4, cf.Β 16) we have the following

$$ |\psi_{4}\rangle =\underset{s_{1}...s_{4}}{\sum }\int d^{3}p_{1}...d^{3}p_{4}~F_{s_{1}...s_{4}}(\mathbf{p}_{1},...,\mathbf{p}_{4})b^{\dagger }(\mathbf{p}_{1},s_{1})d^{\dagger }(\mathbf{p}_{2},s_{2})b^{\dagger }(\mathbf{p}_{3},s_{3})d^{\dagger }(\mathbf{p}_{4},s_{4})|0\rangle , $$
(85)

The resulting relativistic wave equation is as below (n = 4 in (25)):

$$ \begin{array}{@{}rcl@{}} &&F_{s_{1}s_{2}s_{3}s_{4}}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3}, \mathbf{p}_{4})[\omega_{p_{1}}+\omega_{p_{2}}+\omega_{p_{3}}+\omega_{p_{4}}-E] \\ &=&\frac{m^{2}e^{2}}{2(2\pi )^{3}}\underset{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }}{\sum }\int d^{3}p_{1}^{\prime }d^{3}p_{2}^{\prime }d^{3}p_{3}^{\prime }d^{3}p_{4}^{\prime }~F_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }}({\mathbf{p}} _{1}^{\prime },{\mathbf{p}}_{2}^{\prime },{\mathbf{p}}_{3}^{\prime },{\mathbf{p}} _{4}^{\prime }) \\ &&\times\left\{\mathcal{M}_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}^{A}(\mathbf{p}_{1},\mathbf{p}_{2},{\mathbf{p}}_{1}^{\prime },{\mathbf{p}}_{2}^{\prime })~\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}~\delta^{3}({\mathbf{p}}_{3}^{\prime }-\mathbf{p}_{3})\delta^{3}({\mathbf{p}}_{4}^{\prime }-\mathbf{p}_{4})\frac{\delta^{3}({\mathbf{p}}_{1}^{\prime }+{\mathbf{p}}_{2}^{\prime }-\mathbf{p}_{1}-\mathbf{p}_{2})}{ \sqrt{\omega_{p_{1}^{\prime }}\omega_{p_{2}^{\prime }}\omega_{p_{1}}\omega_{p_{2}}}}\right. \\ &&+\mathcal{M}_{s_{2}s_{3}s_{2}^{\prime }s_{3}^{\prime }}^{A}(\mathbf{p}_{2},\mathbf{p}_{3},{\mathbf{p}}_{2}^{\prime },{\mathbf{p}}_{3}^{\prime })~\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{4}^{\prime }s_{4}}~\delta^{3}(\mathbf{p}_{1}^{\prime }-\mathbf{p}_{1})\delta^{3}(\mathbf{p}_{4}^{\prime }-\mathbf{p}_{4})\frac{\delta^{3}({\mathbf{p}} _{2}^{\prime }+{\mathbf{p}}_{3}^{\prime }-{\mathbf{p}}_{2}-\mathbf{p}_{3})}{ \sqrt{\omega_{p_{2}^{\prime }}\omega_{p_{3}^{\prime }}\omega_{p_{2}}\omega_{p_{3}}}} \\ &&+\mathcal{M}_{s_{3}s_{4}s_{3}^{\prime }s_{4}^{\prime }}^{A}(\mathbf{p}_{3},\mathbf{p}_{4},{\mathbf{p}}_{3}^{\prime },{\mathbf{p}} _{4}^{\prime })~\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}~\delta^{3}({\mathbf{p}}_{1}^{\prime }-\mathbf{p}_{1})\delta^{3}({\mathbf{p}}_{2}^{\prime }-\mathbf{p}_{2})\frac{\delta^{3}({\mathbf{p}} _{3}^{\prime }+\mathbf{p}_{4}^{\prime }-\mathbf{p}_{3}-\mathbf{p}_{4})}{ \sqrt{\omega_{p_{3}^{\prime }}\omega_{p_{4}^{\prime }}\omega_{p_{3}}\omega_{p_{4}}}} \\ &&+\mathcal{M}_{s_{1}s_{4}s_{1}^{\prime }s_{4}^{\prime }}^{A}(\mathbf{p}_{1},\mathbf{p}_{4},{\mathbf{p}}_{1}^{\prime },{\mathbf{p}} _{4}^{\prime })~\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}~\delta^{3}(\mathbf{p}_{2}^{\prime }-\mathbf{p}_{2})\delta^{3}(\mathbf{p}_{3}^{\prime }-\mathbf{p}_{3})\frac{\delta^{3}(\mathbf{p} _{1}^{\prime }+\mathbf{p}_{4}^{\prime }-\mathbf{p}_{1}-\mathbf{p}_{4})}{ \sqrt{\omega_{p_{1}^{\prime }}\omega_{p_{4}^{\prime }}\omega_{p_{1}}\omega_{p_{4}}}} \\ &&-\mathcal{M}_{s_{1}s_{3}s_{1}^{\prime }s_{3}^{\prime }}^{Repulsive}(\mathbf{p}_{1},\mathbf{p}_{3},{\mathbf{p}}_{1}^{\prime },{\mathbf{ p}}_{3}^{\prime })~\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{4}^{\prime }s_{4}}~\delta^{3}({\mathbf{p}}_{2}^{\prime }-\mathbf{p}_{2})\delta^{3}({\mathbf{p}}_{4}^{\prime }-\mathbf{p}_{4})\frac{\delta^{3}({\mathbf{p}}_{1}^{\prime }+{\mathbf{p}}_{3}^{\prime }-\mathbf{p}_{1}-\mathbf{p}_{3})}{ \sqrt{\omega_{p_{1}^{\prime }}\omega_{p_{3}^{\prime }}\omega_{p_{1}}\omega_{p_{3}}}} \\ && \left. -\mathcal{M}_{s_{2}s_{4}s_{2}^{\prime }s_{4}^{\prime }}^{Repulsive}(\mathbf{p}_{2},\mathbf{p}_{4},{\mathbf{p}}_{2}^{\prime },{\mathbf{ p}}_{4}^{\prime })~\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{3}^{\prime }s_{3}}~\delta^{3}({\mathbf{p}}_{1}^{\prime }-\mathbf{p}_{1})\delta^{3}({\mathbf{p}_{3}}^{\prime }-\mathbf{p}_{3})\frac{\delta^{3}({\mathbf{p}}_{2}^{\prime }+{\mathbf{p}}_{4}^{\prime }-\mathbf{p}_{2}-\mathbf{p}_{4})}{ \sqrt{\omega_{p_{2}^{\prime }}\omega_{p_{4}^{\prime }}\omega_{p_{2}}\omega_{p_{4}}}}\right\},\\&& \end{array} $$
(86)

where we let \({\mathscr{M}}_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}^{A}(\mathbf {p}_{1},\mathbf {p}_{2},{\mathbf {p}}_{1}^{\prime },{\mathbf { p}}_{2}^{\prime })={\mathscr{M}}_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}^{Attractive}(\mathbf {p}_{1},\mathbf {p}_{2},{\mathbf {p}}_{1}^{\prime },{\mathbf {p}_{2}}^{\prime })-{\mathscr{M}}_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}^{Annihilation}\)\((\mathbf {p}_{1}, \mathbf {p}_{2},{\mathbf {p}}_{1}^{\prime },{\mathbf {p}}_{2}^{\prime })\), and etc. The expressions for \({\mathscr{M}}_{s_{j}s_{k}s_{j}^{\prime }s_{k}^{\prime }}^{Attractive}\), \({\mathscr{M}}_{s_{j}s_{k}s_{j}^{\prime }s_{k}^{\prime }}^{Repulsive}\), and \({\mathscr{M}}_{s_{j}s_{k}s_{j}^{\prime }s_{k}^{\prime }}^{Annihilation}\) have been provided in the main text in (22), (23) and (24).

For the system (Ps2 : eβˆ’e+eβˆ’e+), in the non-relativistic limit, we obtain the following expression:

$$ \begin{array}{@{}rcl@{}} &&F_{s_{1}s_{2}s_{3}s_{4}}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3}, \mathbf{p}_{4})\left[ \frac{\mathbf{p}_{1}^{2}}{2m}+\frac{\mathbf{p}_{2}^{2} }{2m}+\frac{\mathbf{p}_{3}^{2}}{2m}+\frac{\mathbf{p}_{4}^{2}}{2m}-\epsilon_{4}\right] \\ &=&\frac{e^{2}}{(2\pi )^{3}}\underset{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }}{\sum }\int d^{3}{{p}_{1}^{\prime }}d^{3}{p_{2}^{\prime }}d^{3}{{p}_{3}^{\prime }}d^{3}{{p}_{4}^{\prime }}~F_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }}({\mathbf{p}} _{1}^{\prime },{\mathbf{p}}_{2}^{\prime },{\mathbf{p}}_{3}^{\prime },{\mathbf{p}} _{4}^{\prime })\times \\ &&\left[\left( \frac{\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}s_{2}^{\prime }}}{\mathbf{|p}_{1}^{\prime }\mathbf{-p}_{1}\mathbf{|}^{2}}-\frac{A_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}}{4m^{2}}\right) \delta_{s_{3}^{\prime }s_{3}} \delta_{s_{4}^{\prime }s_{4}} \delta^{3}({\mathbf{p}}_{3}^{\prime }-\mathbf{p}_{3})\delta^{3}({\mathbf{p}}_{4}^{\prime }- \mathbf{p}_{4})\delta^{3}({\mathbf{p}}_{1}^{\prime }+{\mathbf{p}}_{2}^{\prime }- \mathbf{p}_{1}-\mathbf{p}_{2})\right. \\ &&+\left( \frac{\delta_{s_{2}s_{2}^{\prime }}\delta_{s_{3}^{\prime }s_{3}} }{\mathbf{|p}_{2}^{\prime }\mathbf{-p}_{2}\mathbf{|}^{2}}-\frac{ A_{s_{2}s_{3}s_{2}^{\prime }s_{3}^{\prime }}}{4m^{2}}\right) \delta_{s_{1}s_{1}^{\prime }}\delta_{s_{4}^{\prime }s_{4}}~\delta^{3}(\mathbf{p}_{1}^{\prime }-\mathbf{p}_{1})\delta^{3}(\mathbf{p}_{4}^{\prime }-\mathbf{p} _{4})\delta^{3}(\mathbf{p}_{2}^{\prime }+\mathbf{p}_{3}^{\prime }-\mathbf{p} _{2}-\mathbf{p}_{3}) \\ &&+\left( \frac{\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}} }{\mathbf{|p}_{3}^{\prime }\mathbf{-p}_{3}\mathbf{|}^{2}}-\frac{ A_{s_{3}s_{4}s_{3}^{\prime }s_{4}^{\prime }}}{4m^{2}}\right) \delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}~\delta^{3}(\mathbf{p}_{1}^{\prime }-\mathbf{p}_{1})\delta^{3}({\mathbf{p}}_{2}^{\prime }-\mathbf{p} _{2})\delta^{3}({\mathbf{p}}_{3}^{\prime }+{\mathbf{p}}_{4}^{\prime }-\mathbf{p} _{3}-\mathbf{p}_{4}) \\ &&+\left( \frac{\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{4}^{\prime }s_{4}} }{\mathbf{|p}_{1}^{\prime }\mathbf{-p}_{1}\mathbf{|}^{2}}-\frac{ A_{s_{1}s_{4}s_{1}^{\prime }s_{4}^{\prime }}}{4m^{2}}\right) \delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}~\delta^{3}({\mathbf{p}}_{2}^{\prime }-\mathbf{p}_{2})\delta^{3}({\mathbf{p}}_{3}^{\prime }-\mathbf{p} _{3})\delta^{3}(\mathbf{p}_{1}^{\prime }+{\mathbf{p}}_{4}^{\prime }-\mathbf{p} _{1}-\mathbf{p}_{4}) \\ &&-\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}~\delta^{3}(\mathbf{p}_{2}^{\prime }-\mathbf{p}_{2})\delta^{3}({\mathbf{p}}_{4}^{\prime }-\mathbf{p}_{4})\frac{\delta^{3}({\mathbf{p}}_{1}^{\prime }+{\mathbf{p}}_{3}^{\prime }- \mathbf{p}_{1}-\mathbf{p}_{3})}{{\mathbf{|p}}_{1}^{\prime }\mathbf{-p}_{1} \mathbf{|}^{2}} \\ &&\left.-\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}~\delta^{3}(\mathbf{p}_{1}^{\prime }-\mathbf{p}_{1})\delta^{3}(\mathbf{p}_{3}^{\prime }-\mathbf{p}_{3})\frac{\delta^{3}(\mathbf{p}_{2}^{\prime }+{\mathbf{p}}_{4}^{\prime }- \mathbf{p}_{2}-\mathbf{p}_{4})}{\mathbf{|p}_{2}^{\prime }\mathbf{-p}_{2} \mathbf{|}^{2}}\right], \end{array} $$
(87)

where we let πœ–4 = E βˆ’β€‰4m. Its coordinate-space version is the four-body SchrΓΆdinger equation, (see (31) with n = 4). In the coordinate space, the four-body equation becomes as the following:

$$ \begin{array}{@{}rcl@{}} &&\left\{-\frac{1}{2m}\left( {\sum\limits_{i=1}^{4}{\nabla_{i}^{2}}}\right) -\epsilon_{4}-\frac{\alpha }{|\mathbf{x}_{1}-\mathbf{x}_{2}|}-\frac{\alpha }{|\mathbf{x}_{2}-\mathbf{x}_{3}|}-\frac{\alpha }{|\mathbf{x}_{3}-\mathbf{x} _{4}|}-\frac{\alpha }{|\mathbf{x}_{1}-\mathbf{x}_{4}|}\right. \\ && \left.+\frac{\alpha }{|\mathbf{x}_{1}-\mathbf{x}_{3}|}+\frac{\alpha }{|\mathbf{x} _{2}-\mathbf{x}_{4}|}\right\}{\Psi}_{s_{1}s_{2}s_{3}s_{4}}(\mathbf{x}_{1}, \mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4}) \\ &=&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{1}-\mathbf{x}_{2})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }}{\sum } A_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x} _{3},\mathbf{x}_{4}) \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{2}-\mathbf{x}_{3})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }}{\sum } A_{s_{2}s_{3}s_{2}^{\prime }s_{3}^{\prime }}\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{4}^{\prime }s_{4}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x} _{3},\mathbf{x}_{4}) \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{3}-\mathbf{x}_{4})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }}{\sum } A_{s_{3}s_{4}s_{3}^{\prime }s_{4}^{\prime }}\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x} _{3},\mathbf{x}_{4}) \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{1}-\mathbf{x}_{4})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }}{\sum } A_{s_{1}s_{4}s_{1}^{\prime }s_{4}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x} _{3},\mathbf{x}_{4}). \end{array} $$
(88)

The interactions are expressed by attractive or repulsive Coulomb potentials in the left hand side of the equation and the repulsive contact virtual annihilation interactions (various delta functions in the right hand side of the above equation). For example, for a system such as positronium molecule (eβˆ’e+eβˆ’e+) we have four attractive terms, two repulsive terms, and four virtual annihilation interaction terms (the four terms of the right hand side of the above equation).

d) :

The five-body systems (such as eβˆ’e+eβˆ’e+eβˆ’):

For the five-body systems such as (eβˆ’e+eβˆ’e+eβˆ’) we use the trial state (17) in the manuscript. Hence, we have

$$ \begin{array}{@{}rcl@{}} |\psi_{5}\rangle &=&\underset{s_{1}...s_{5}}{\sum }\int d^{3}p_{1}...d^{3}p_{5}~F_{s_{1}...s_{5}}(\mathbf{p}_{1},...,\mathbf{p}_{5})b^{\dagger }(\mathbf{p}_{1},s_{1})d^{\dagger }(\mathbf{p}_{2},s_{2})b^{\dagger }(\mathbf{p}_{3},s_{3})\\ &&d^{\dagger }(\mathbf{p}_{4},s_{4})b^{\dagger }(\mathbf{p}_{5},s_{5})|0\rangle \end{array} $$
(89)

By choosing the above trial state we have the following relativistic wave equation (n = 5 in (25)):

$$ \begin{array}{@{}rcl@{}} &&F_{s_{1}s_{2}s_{3}s_{4}s_{5}}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3}, \mathbf{p}_{4},\mathbf{p}_{5})[\omega_{p_{1}}+\omega_{p_{2}}+\omega_{p_{3}}+\omega_{p_{4}}+\omega_{p_{5}}-E] \\ &\!=&\!\frac{m^{2}e^{2}}{2(2\pi )^{3}}\underset{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }}{\sum }\int d^{3}p_{1}^{\prime }d^{3}p_{2}^{\prime }d^{3}p_{3}^{\prime }d^{3}p_{4}^{\prime }d^{3}p_{5}^{\prime }F_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }}(\mathbf{p}_{1}^{\prime }, \mathbf{p}_{2}^{\prime },\mathbf{p}_{3}^{\prime },\mathbf{p}_{4}^{\prime }, \mathbf{p}_{5}^{\prime }) \\ &&\!\times\left\{\mathcal{M}_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}^{A}(\mathbf{p}_{1},\mathbf{p}_{2},{\mathbf{p}_{1}^{\prime }},{\mathbf{ p}_{2}^{\prime }})~\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}~\delta_{s_{5}^{\prime }s_{5}}\delta^{3}({\mathbf{p}_{3}^{\prime }} - \mathbf{p}_{3})\delta^{3}({\mathbf{p}_{4}^{\prime }}-\mathbf{p}_{4})\delta^{3}({\mathbf{p}_{5}^{\prime }} - \mathbf{p}_{5})\frac{\delta^{3}(\mathbf{p}_{1}^{\prime }+{\mathbf{p}_{2}^{\prime }}-\mathbf{p}_{1}-\mathbf{p}_{2})}{ \sqrt{\omega_{p_{1}^{\prime }}\omega_{p_{2}^{\prime }}\omega_{p_{1}}\omega_{p_{2}}}}\right. \\ &&\!+\mathcal{M}_{s_{2}s_{3}{s_{2}^{\prime }}{s_{3}^{\prime }}}^{A }(\mathbf{p}_{2},\mathbf{p}_{3},{\mathbf{p}_{2}^{\prime }},{\mathbf{p}_{3}^{\prime }})~\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}~\delta^{3}({\mathbf{p}_{1}^{\prime }}- \mathbf{p}_{1})\delta^{3}(\mathbf{p}_{4}^{\prime }-\mathbf{p}_{4})\delta ^{3}({\mathbf{p}_{5}^{\prime }}-\mathbf{p}_{5})\frac{\delta^{3}({\mathbf{p}_{2}^{\prime }}+{\mathbf{p}_{3}^{\prime }}-\mathbf{p}_{2}-\mathbf{p}_{3})}{ \sqrt{\omega_{p_{2}^{\prime }}\omega_{p_{3}^{\prime }}\omega_{p_{2}}\omega_{p_{3}}}} \\ &&\!+\mathcal{M}_{s_{3}s_{4}s_{3}^{\prime }s_{4}^{\prime }}^{A }(\mathbf{p}_{3},\mathbf{p}_{4},\mathbf{p}_{3}^{\prime },\mathbf{p}_{4}^{\prime })~\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}~\delta_{s_{5}^{\prime }s_{5}}\delta^{3}(\mathbf{p}_{1}^{\prime }- \mathbf{p}_{1})\delta^{3}(\mathbf{p}_{2}^{\prime }-\mathbf{p}_{2})\delta ^{3}({\mathbf{p}_{5}^{\prime }}-\mathbf{p}_{5})\frac{\delta^{3}({\mathbf{p}_{3}^{\prime }}+{\mathbf{p}_{4}^{\prime }}-\mathbf{p}_{3}-\mathbf{p}_{4})}{ \sqrt{\omega_{p_{3}^{\prime }}\omega_{p_{4}^{\prime }}\omega_{p_{3}}\omega_{p_{4}}}} \\ &&\!+\mathcal{M}_{s_{1}s_{4}s_{1}^{\prime }s_{4}^{\prime }}^{A }(\mathbf{p}_{1},\mathbf{p}_{4},{\mathbf{p}_{1}^{\prime }},{\mathbf{p}_{4}^{\prime }})~\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{5}^{\prime }s_{5}}~\delta^{3}(\mathbf{p}_{2}^{\prime }- \mathbf{p}_{2})\delta^{3}({\mathbf{p}_{3}^{\prime }}-\mathbf{p}_{3})\delta ^{3}({\mathbf{p}_{5}^{\prime }}-\mathbf{p}_{5})\frac{\delta^{3}({\mathbf{p}_{1}^{\prime }}+{\mathbf{p}_{4}^{\prime }}-\mathbf{p}_{1}-\mathbf{p}_{4})}{ \sqrt{\omega_{p_{1}^{\prime }}\omega_{p_{4}^{\prime }}\omega_{p_{1}}\omega_{p_{4}}}} \\ &&\!+\mathcal{M}_{s_{2}s_{5}s_{2}^{\prime }s_{5}^{\prime }}^{A}(\mathbf{p}_{2},\mathbf{p}_{5},{\mathbf{p}_{2}^{\prime }},{\mathbf{p}_{5}^{\prime }})~\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}~\delta^{3}(\mathbf{p}_{1}^{\prime }- \mathbf{p}_{1})\delta^{3}(\mathbf{p}_{3}^{\prime }-\mathbf{p}_{3})\delta ^{3}(\mathbf{p}_{4}^{\prime }-\mathbf{p}_{4})\frac{\delta^{3}(\mathbf{p}_{2}^{\prime }+\mathbf{p}_{5}^{\prime }-\mathbf{p}_{2}-\mathbf{p}_{5})}{ \sqrt{\omega_{p_{2}^{\prime }}\omega_{p_{5}^{\prime }}\omega_{p_{2}}\omega_{p_{5}}}} \\ &&\!+\mathcal{M}_{s_{4}s_{5}s_{4}^{\prime }s_{5}^{\prime }}^{A }(\mathbf{p}_{4},\mathbf{p}_{5},\mathbf{p}_{4}^{\prime },\mathbf{p}_{5}^{\prime })~\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}~\delta^{3}(\mathbf{p}_{1}^{\prime }- \mathbf{p}_{1})\delta^{3}(\mathbf{p}_{2}^{\prime }-\mathbf{p}_{2})\delta ^{3}(\mathbf{p}_{3}^{\prime }-\mathbf{p}_{3})\frac{\delta^{3}(\mathbf{p}_{4}^{\prime }+\mathbf{p}_{5}^{\prime }-\mathbf{p}_{4}-\mathbf{p}_{5})}{ \sqrt{\omega_{p_{4}^{\prime }}\omega_{p_{5}^{\prime }}\omega_{p_{4}}\omega_{p_{5}}}} \\ &&\!-\mathcal{M}_{s_{1}s_{3}s_{1}^{\prime }s_{3}^{\prime }}^{Repulsive}(\mathbf{p}_{1},\mathbf{p}_{3},{\mathbf{p}_{1}^{\prime }},{\mathbf{ p}_{3}^{\prime }})~\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{4}^{\prime }s_{4}}~\delta_{s_{5}^{\prime }s_{5}}\delta^{3}(\mathbf{p}_{2}^{\prime }- \mathbf{p}_{2})\delta^{3}(\mathbf{p}_{4}^{\prime }-\mathbf{p}_{4})\delta^{3}(\mathbf{p}_{5}^{\prime } - \mathbf{p}_{5})\frac{\delta^{3}(\mathbf{p}_{1}^{\prime }+\mathbf{p}_{3}^{\prime }-\mathbf{p}_{1}-\mathbf{p}_{3})}{ \sqrt{\omega_{p_{1}^{\prime }}\omega_{p_{3}^{\prime }}\omega_{p_{1}}\omega_{p_{3}}}} \\ &&\!-\mathcal{M}_{s_{2}s_{4}s_{2}^{\prime }s_{4}^{\prime }}^{Repulsive}(\mathbf{p}_{2},\mathbf{p}_{4},{\mathbf{p}_{2}^{\prime }},{\mathbf{ p}_{4}^{\prime }})~\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{5}^{\prime }s_{5}}~\delta^{3}({\mathbf{p}_{1}^{\prime }}- \mathbf{p}_{1})\delta^{3}({\mathbf{p}_{3}^{\prime }}-\mathbf{p}_{3})\delta^{3}({\mathbf{p}_{5}^{\prime }} - \mathbf{p}_{5})\frac{\delta^{3}({\mathbf{p}_{2}^{\prime }}+{\mathbf{p}_{4}^{\prime }}-\mathbf{p}_{2}-\mathbf{p}_{4})}{ \sqrt{\omega_{p_{2}^{\prime }}\omega_{p_{4}^{\prime }}\omega_{p_{2}}\omega_{p_{4}}}} \\ &&\!-\mathcal{M}_{s_{1}s_{5}s_{1}^{\prime }s_{5}^{\prime }}^{Repulsive}(\mathbf{p}_{1},\mathbf{p}_{5},{\mathbf{p}_{1}^{\prime }},{\mathbf{ p}_{5}^{\prime }})~\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}~\delta^{3}({\mathbf{p}_{2}^{\prime }}- \mathbf{p}_{2})\delta^{3}({\mathbf{p}_{3}^{\prime }}-\mathbf{p}_{3})\delta^{3}({\mathbf{p}_{4}^{\prime }} - \mathbf{p}_{4})\frac{\delta^{3}({\mathbf{p}_{1}^{\prime }}+{\mathbf{p}_{5}^{\prime }}-\mathbf{p}_{1}-\mathbf{p}_{5})}{ \sqrt{\omega_{p_{1}^{\prime }}\omega_{p_{5}^{\prime }}\omega_{p_{1}}\omega_{p_{5}}}} \\ &&\left.\!-\mathcal{M}_{s_{3}s_{5}s_{3}^{\prime }s_{5}^{\prime }}^{Repulsive}(\mathbf{p}_{3},\mathbf{p}_{5},{\mathbf{p}_{3}^{\prime }},{\mathbf{ p}_{5}^{\prime }})\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{4}^{\prime }s_{4}}~\delta^{3}({\mathbf{p}_{1}^{\prime }} - \mathbf{p}_{1})\delta^{3}({\mathbf{p}_{2}^{\prime }} - \mathbf{p}_{2})\delta^{3}({\mathbf{p}_{4}^{\prime }} - \mathbf{p}_{4})\frac{\delta^{3}({\mathbf{p}_{3}^{\prime }} + {\mathbf{p}_{5}^{\prime }}-\mathbf{p}_{3}-\mathbf{p}_{5})}{ \sqrt{\omega_{p_{3}^{\prime }}\omega_{p_{5}^{\prime }}\omega_{p_{3}}\omega_{p_{5}}}}\right\}, \\ \end{array} $$
(90)

where we let \({\mathscr{M}}_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}^{A}(\mathbf {p}_{1},\mathbf {p}_{2},\mathbf {p}_{1}^{\prime },\mathbf { p}_{2}^{\prime })={\mathscr{M}}_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}^{Attractive}(\mathbf {p}_{1},\mathbf {p}_{2},\mathbf {p}_{1}^{\prime },\mathbf {p}_{2}^{\prime })-{\mathscr{M}}_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}^{Annihilation}\)\((\mathbf {p}_{1}, \mathbf {p}_{2},\mathbf {p}_{1}^{\prime },\mathbf {p}_{2}^{\prime })\), and etc. The expressions for \({\mathscr{M}}_{s_{j}s_{k}s_{j}^{\prime }s_{k}^{\prime }}^{Attractive}\), \({\mathscr{M}}_{s_{j}s_{k}s_{j}^{\prime }s_{k}^{\prime }}^{Repulsive}\), and \({\mathscr{M}}_{s_{j}s_{k}s_{j}^{\prime }s_{k}^{\prime }}^{Annihilation}\) have been provide in the main text in (22), (23) and (24).

For the non relativistic equation of the five-body system (eβˆ’e+eβˆ’e+eβˆ’) in the momentum space we have the following expression:

$$ \begin{array}{@{}rcl@{}} &&F_{s_{1}s_{2}s_{3}s_{4}s_{5}}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3}, \mathbf{p}_{4},\mathbf{p}_{5})\left[ \frac{\mathbf{p}_{1}^{2}}{2m}+\frac{ \mathbf{p}_{2}^{2}}{2m}+\frac{\mathbf{p}_{3}^{2}}{2m}+\frac{\mathbf{p} _{4}^{2}}{2m}+\frac{\mathbf{p}_{5}^{2}}{2m}-\epsilon_{5}\right] \\ &=&\frac{e^{2}}{(2\pi )^{3}}\underset{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }}{\sum }\int d^{3}p_{1}^{\prime }d^{3}p_{2}^{\prime }d^{3}p_{3}^{\prime }d^{3}p_{4}^{\prime }~d^{3}p_{5}^{\prime }F_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }}(\mathbf{p}_{1}^{\prime }, {\mathbf{p}_{2}^{\prime }},{\mathbf{p}_{3}^{\prime }},{\mathbf{p}_{4}^{\prime }}, {\mathbf{p}_{5}^{\prime }})\times \\ &&\left[\left( \frac{\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}s_{2}^{\prime }}}{\mathbf{|p}_{1}^{\prime }\mathbf{-p}_{1}\mathbf{|}^{2}}-\frac{A_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}}{4m^{2}}\right) \delta_{s_{3}^{\prime }s_{3}} \delta_{s_{4}^{\prime }s_{4}} \delta_{s_{5}^{\prime }s_{5}}\delta^{3}({\mathbf{p}_{3}^{\prime }}-\mathbf{p} _{3})\delta^{3}({\mathbf{p}_{4}^{\prime }}-\mathbf{p}_{4})\delta^{3}({\mathbf{ p}_{5}^{\prime }}-\mathbf{p}_{5})\right.\\ &&\times\delta^{3}({\mathbf{p}_{1}^{\prime }}+{\mathbf{ p}_{2}^{\prime }}-\mathbf{p}_{1}-\mathbf{p}_{2}) \\ &&+\left( \frac{\delta_{s_{2}s_{2}^{\prime }}\delta_{s_{3}^{\prime }s_{3}} }{\mathbf{|p}_{2}^{\prime }\mathbf{-p}_{2}\mathbf{|}^{2}}-\frac{ A_{s_{2}s_{3}s_{2}^{\prime }s_{3}^{\prime }}}{4m^{2}}\right) \delta_{s_{1}s_{1}^{\prime }}\delta_{s_{4}^{\prime }s_{4}}~\delta_{s_{5}^{\prime }s_{5}}\delta^{3}(\mathbf{p}_{1}^{\prime }-\mathbf{p}_{1})\delta^{3}({\mathbf{p}_{4}^{\prime }}-\mathbf{p}_{4})\delta^{3}({\mathbf{p}_{5}^{\prime }}- \mathbf{p}_{5})\\ &&\times\delta^{3}({\mathbf{p}_{2}^{\prime }}+{\mathbf{p}_{3}^{\prime }}- \mathbf{p}_{2}-\mathbf{p}_{3}) \\ &&+\left( \frac{\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}} }{\mathbf{|p}_{3}^{\prime }\mathbf{-p}_{3}\mathbf{|}^{2}}-\frac{ A_{s_{3}s_{4}s_{3}^{\prime }s_{4}^{\prime }}}{4m^{2}}\right) \delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{5}^{\prime }s_{5}}\delta^{3}(\mathbf{p}_{1}^{\prime }-\mathbf{p}_{1})\delta^{3}(\mathbf{p}_{2}^{\prime }-\mathbf{p}_{2})\delta^{3}({\mathbf{p}_{5}^{\prime }}- \mathbf{p}_{5})\\ &&\times\delta^{3}({\mathbf{p}_{3}^{\prime }}+{\mathbf{p}_{4}^{\prime }}- \mathbf{p}_{3}-\mathbf{p}_{4}) \\ &&+\left( \frac{\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{4}^{\prime }s_{4}} }{\mathbf{|p}_{1}^{\prime }\mathbf{-p}_{1}\mathbf{|}^{2}}-\frac{ A_{s_{1}s_{4}s_{1}^{\prime }s_{4}^{\prime }}}{4m^{2}}\right) \delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{5}^{\prime }s_{5}}\delta^{3}({\mathbf{p}_{2}^{\prime }}-\mathbf{p}_{2})\delta^{3}({\mathbf{p}_{3}^{\prime }}-\mathbf{p}_{3})\delta^{3}({\mathbf{p}_{5}^{\prime }}- \mathbf{p}_{5})\\ &&\times \delta^{3}({\mathbf{p}_{1}^{\prime }}+{\mathbf{p}_{4}^{\prime }}- \mathbf{p}_{1}-\mathbf{p}_{4}) \\ &&+\left( \frac{\delta_{s_{2}s_{2}^{\prime }}\delta_{s_{5}^{\prime }s_{5}} }{\mathbf{|p}_{2}^{\prime }\mathbf{-p}_{2}\mathbf{|}^{2}}-\frac{ A_{s_{2}s_{5}s_{2}^{\prime }s_{5}^{\prime }}}{4m^{2}}\right) \delta_{s_{1}s_{1}^{\prime }}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta^{3}({\mathbf{p}_{1}^{\prime }}-\mathbf{p}_{1})\delta^{3}({\mathbf{p}_{3}^{\prime}}-\mathbf{p}_{3})\delta^{3}({\mathbf{p}_{4}^{\prime }}- \mathbf{p}_{4})\\ &&\times\delta^{3}({\mathbf{p}_{2}^{\prime }}+{\mathbf{p}_{5}^{\prime }}- \mathbf{p}_{2}-\mathbf{p}_{5}) \\ &&+\left( \frac{\delta_{s_{4}s_{4}^{\prime }}\delta_{s_{5}^{\prime }s_{5}} }{\mathbf{|p}_{4}^{\prime }\mathbf{-p}_{4}\mathbf{|}^{2}}-\frac{ A_{s_{4}s_{5}s_{4}^{\prime }s_{5}^{\prime }}}{4m^{2}}\right) \delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta^{3}({\mathbf{p}_{1}^{\prime }}-\mathbf{p}_{1})\delta^{3}({\mathbf{p}_{2}^{\prime }}-\mathbf{p}_{2})\delta^{3}({\mathbf{p}_{3}^{\prime }}- \mathbf{p}_{3})\\ &&\times\delta^{3}({\mathbf{p}_{4}^{\prime }}+{\mathbf{p}_{5}^{\prime }}- \mathbf{p}_{4}-\mathbf{p}_{5}) \\ &&-\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta^{3}(\mathbf{p}_{2}^{\prime }-\mathbf{p}_{2})\delta^{3}({\mathbf{p}_{4}^{\prime }}-\mathbf{p}_{4})\delta^{3}({\mathbf{p}_{5}^{\prime }}- \mathbf{p}_{5})\frac{\delta^{3}({\mathbf{p}_{1}^{\prime }}+\mathbf{p} _{3}^{\prime }-\mathbf{p}_{1}-\mathbf{p}_{3})}{\mathbf{|p}_{1}^{\prime } \mathbf{-p}_{1}\mathbf{|}^{2}} \\ &&-\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta^{3}(\mathbf{p}_{1}^{\prime }-\mathbf{p}_{1})\delta^{3}(\mathbf{p}_{3}^{\prime }-\mathbf{p}_{3})\delta^{3}(\mathbf{p}_{5}^{\prime }- \mathbf{p}_{5})\frac{\delta^{3}(\mathbf{p}_{2}^{\prime }+\mathbf{p} _{4}^{\prime }-\mathbf{p}_{2}-\mathbf{p}_{4})}{\mathbf{|p}_{2}^{\prime } \mathbf{-p}_{2}\mathbf{|}^{2}} \\ &&-\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta^{3}({\mathbf{p}_{2}^{\prime }}-\mathbf{p}_{2})\delta^{3}({\mathbf{p}_{3}^{\prime }}-\mathbf{p}_{3})\delta^{3}({\mathbf{p}_{4}^{\prime }}- \mathbf{p}_{4})\frac{\delta^{3}({\mathbf{p}_{1}^{\prime }}+\mathbf{p} _{5}^{\prime }-\mathbf{p}_{1}-\mathbf{p}_{5})}{\mathbf{|p}_{1}^{\prime } \mathbf{-p}_{1}\mathbf{|}^{2}} \\ && \left. -\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta^{3}(\mathbf{p}_{2}^{\prime } - \mathbf{p}_{2})\delta^{3}(\mathbf{p}_{4}^{\prime}-\mathbf{p}_{4})\delta^{3}(\mathbf{p}_{5}^{\prime }- \mathbf{p}_{5})\frac{\delta^{3}(\mathbf{p}_{3}^{\prime }+\mathbf{p} _{5}^{\prime }-\mathbf{p}_{3} - \mathbf{p}_{5})}{\mathbf{|p}_{3}^{\prime } \mathbf{-p}_{3}\mathbf{|}^{2}}\right] ,\\ \end{array} $$
(91)

where we let πœ–5 = E βˆ’β€‰5m. Its coordinate-space version is the five-body SchrΓΆdinger , (see (31) with n = 5). In the coordinate space, the five-body equation becomes as the following:

$$ \begin{array}{@{}rcl@{}} &&\left\{-\frac{1}{2m}\left( {\sum\limits_{i=1}^{5}{\nabla_{i}^{2}}}\right) -\epsilon_{5}-\frac{\alpha }{|\mathbf{x}_{1}-\mathbf{x}_{2}|} - \frac{\alpha }{|\mathbf{x}_{2}-\mathbf{x}_{3}|}-\frac{\alpha }{|\mathbf{x}_{3}-\mathbf{x} _{4}|}-\frac{\alpha }{|\mathbf{x}_{1}-\mathbf{x}_{4}|} - \frac{\alpha }{| \mathbf{x}_{2}-\mathbf{x}_{5}|}\right. \\ && -\frac{\alpha }{|\mathbf{x}_{4}-\mathbf{x}_{5}|}+\frac{\alpha }{|\mathbf{x} _{1}-\mathbf{x}_{3}|}+\frac{\alpha }{|\mathbf{x}_{2}-\mathbf{x}_{4}|}+\frac{ \alpha }{|\mathbf{x}_{1}-\mathbf{x}_{5}|}\\&&\left.+\frac{\alpha }{|\mathbf{x}_{3}- \mathbf{x}_{5}|}\vphantom{\sum\limits_{i=1}^{5}}\right\}{\Psi}_{s_{1}s_{2}s_{3}s_{4}s_{5}}(\mathbf{x}_{1}, \mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4},\mathbf{x}_{5}) \\ &=&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{1}-\mathbf{x}_{2})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }}{ \sum }A_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4},\mathbf{x} _{5}) \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{2}-\mathbf{x}_{3})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }}{ \sum }A_{s_{2}s_{3}s_{2}^{\prime }s_{3}^{\prime }}\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4},\mathbf{x} _{5}) \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{3}-\mathbf{x}_{4})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }}{ \sum }A_{s_{3}s_{4}s_{3}^{\prime }s_{4}^{\prime }}\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{5}^{\prime }s_{5}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4},\mathbf{x} _{5}) \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{1}-\mathbf{x}_{4})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }}{ \sum }A_{s_{1}s_{4}s_{1}^{\prime }s_{4}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{5}^{\prime }s_{5}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4},\mathbf{x} _{5}). \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{2}-\mathbf{x}_{5})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }}{ \sum }A_{s_{2}s_{5}s_{2}^{\prime }s_{5}^{\prime }}\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4},\mathbf{x} _{5}) \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{4}-\mathbf{x}_{5})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }}{ \sum }A_{s_{4}s_{5}s_{4}^{\prime }s_{5}^{\prime }}\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4},\mathbf{x} _{5}) \end{array} $$
(92)

The interactions are expressed by attractive or repulsive Coulomb potentials in the left hand side of the equation and the repulsive contact virtual annihilation interactions (various delta functions in the right hand side of the above equation). For example, for a system such as five body (eβˆ’e+eβˆ’e+eβˆ’) we have six attractive terms, four repulsive terms, and six virtual annihilation interaction terms (the six terms of the right hand side of the above equation).

  • e) The six-body systems (such as Ps3, eβˆ’e+eβˆ’e+eβˆ’e+):

For the six-body systems such as (Ps3, eβˆ’e+eβˆ’e+eβˆ’e+) we use the trial state (16) in the manuscript. Hence, we have

$$ \begin{array}{@{}rcl@{}} |\psi_{6}\rangle &=&\underset{s_{1}...s_{6}}{\sum }\int d^{3}p_{1}...d^{3}p_{6}~F_{s_{1}...s_{6}}(\mathbf{p}_{1},...,\mathbf{p}_{6})b^{\dagger }(\mathbf{p}_{1},s_{1})d^{\dagger }(\mathbf{p}_{2},s_{2})b^{\dagger }(\mathbf{p}_{3},s_{3})\\ &&\times d^{\dagger}(\mathbf{p}_{4},s_{4})b^{\dagger }(\mathbf{p}_{5},s_{5})d^{\dagger }(\mathbf{p} _{6},s_{6})|0\rangle \end{array} $$
(93)

By choosing the above trial state we have the following relativistic wave equation (n = 6 in (25)):

$$ \begin{array}{@{}rcl@{}} &&F_{s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3},\mathbf{p}_{4},\mathbf{p}_{5},\mathbf{p}_{6})[\omega_{p_{1}}+\omega _{p_{2}}+\omega_{p_{3}}+\omega_{p_{4}}+\omega_{p_{5}}+\omega_{p_{6}}-E] \\ &=&\frac{m^{2}e^{2}}{2(2\pi )^{3}}\underset{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}{\sum }\int d^{3}p_{1}^{\prime }d^{3}p_{2}^{\prime }d^{3}p_{3}^{\prime }d^{3}p_{4}^{\prime }d^{3}p_{5}^{\prime}d^{3}p_{6}^{\prime }F_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}({\mathbf{p}_{1}^{\prime }},{\mathbf{p}_{2}^{\prime }},{\mathbf{p}_{3}^{\prime }},{\mathbf{p}_{4}^{\prime }},{\mathbf{p} _{5}^{\prime }},{\mathbf{p}_{6}^{\prime }})\times \\ &&\left\{\mathcal{M}_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}^{A}(\mathbf{p}_{1},\mathbf{p}_{2},{\mathbf{p}_{1}^{\prime }},{\mathbf{ p}_{2}^{\prime }})~\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}~\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}\delta_{\mathbf{p}_{3},\mathbf{p}_{3}^{\prime }}^{3}\delta_{{\mathbf{p}_{4}},\mathbf{p}_{4}^{\prime }}^{3}\delta^{3}_{{\mathbf{p}_{5}},{\mathbf{p}_{5}^{\prime }}}\delta^{3}_{{\mathbf{p}_{6}},{\mathbf{p}_{6}^{\prime }}}\frac{\delta^{3}({\mathbf{p}_{1}^{\prime }}+{\mathbf{p}_{2}^{\prime}}-\mathbf{p}_{1}- \mathbf{p}_{2})}{\sqrt{\omega_{p_{1}^{\prime }}\omega_{p_{2}^{\prime }}\omega_{p_{1}}\omega_{p_{2}}}}\right. \\ &&+\mathcal{M}_{s_{2}s_{3}s_{2}^{\prime }s_{3}^{\prime }}^{A }(\mathbf{p}_{2},\mathbf{p}_{3},{\mathbf{p}_{2}^{\prime }},{\mathbf{p}_{3}^{\prime }})\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}\delta^{3}_{{ \mathbf{p}_{1}},{\mathbf{p}_{1}^{\prime}}}\delta^{3}_{{\mathbf{p}_{4}},{\mathbf{p}_{4}^{\prime }}}\delta_{\mathbf{p}_{5},\mathbf{p}_{5}^{\prime }}^{3}\delta_{\mathbf{p}_{6},\mathbf{p}_{6}^{\prime}}^{3}\frac{\delta^{3}(\mathbf{p}_{2}^{\prime }+\mathbf{p}_{3}^{\prime }-\mathbf{p}_{2}- \mathbf{p}_{3})}{\sqrt{\omega_{p_{2}^{\prime }}\omega_{p_{3}^{\prime }}\omega_{p_{2}}\omega_{p_{3}}}} \\ &&+\mathcal{M}_{s_{3}s_{4}s_{3}^{\prime }s_{4}^{\prime }}^{A }(\mathbf{p}_{3},\mathbf{p}_{4},{\mathbf{p}_{3}^{\prime }},{\mathbf{p}_{4}^{\prime }})\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}~\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}\delta_{ \mathbf{p}_{1},\mathbf{p}_{1}^{\prime}}^{3}\delta_{\mathbf{p}_{2},\mathbf{p}_{2}^{\prime }}^{3}\delta^{3}_{{\mathbf{p}_{5}},{\mathbf{p}_{5}^{\prime }}}\delta_{{\mathbf{p}_{6}},\mathbf{p}_{6}^{\prime }}^{3}\frac{\delta^{3}(\mathbf{p}_{3}^{\prime }+\mathbf{p}_{4}^{\prime }-\mathbf{p}_{3}- \mathbf{p}_{4})}{\sqrt{\omega_{p_{3}^{\prime }}\omega_{p_{4}^{\prime }}\omega_{p_{3}}\omega_{p_{4}}}} \\ &&+\mathcal{M}_{s_{1}s_{4}s_{1}^{\prime }s_{4}^{\prime }}^{A }(\mathbf{p}_{1},\mathbf{p}_{4},{\mathbf{p}_{1}^{\prime }},{\mathbf{p}_{4}^{\prime }})\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}\delta_{\mathbf{p}_{2},\mathbf{p}_{2}^{\prime }}^{3}\delta_{\mathbf{p}_{3},\mathbf{p}_{3}^{\prime }}^{3}\delta^{3}_{\mathbf{p}_{5},{\mathbf{p}_{5}^{\prime }}}\delta^{3}_{\mathbf{p}_{6},{\mathbf{p}_{6}^{\prime }}}\frac{\delta^{3}({\mathbf{p}_{1}^{\prime }}+\mathbf{p}_{4}^{\prime }-\mathbf{p}_{1}- \mathbf{p}_{4})}{\sqrt{\omega_{p_{1}^{\prime }}\omega_{p_{4}^{\prime }}\omega_{p_{1}}\omega_{p_{4}}}} \\ &&+\mathcal{M}_{s_{2}s_{5}s_{2}^{\prime }s_{5}^{\prime }}^{A }(\mathbf{p}_{2},\mathbf{p}_{5},\mathbf{p}_{2}^{\prime },\mathbf{p}_{5}^{\prime })\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{6}^{\prime }s_{6}}\delta^{3}_{\mathbf{p}_{1},{\mathbf{p}_{1}^{\prime }}}\delta_{\mathbf{p}_{3},\mathbf{p}_{3}^{\prime }}^{3}\delta^{3}_{\mathbf{p}_{4},{\mathbf{p}_{4}^{\prime }}}\delta^{3}_{\mathbf{p}_{6},{\mathbf{p}_{6}^{\prime }}}\frac{\delta^{3}({\mathbf{p}_{2}^{\prime }}+{\mathbf{p}_{5}^{\prime }}-\mathbf{p}_{2}- \mathbf{p}_{5})}{\sqrt{\omega_{p_{2}^{\prime }}\omega_{p_{5}^{\prime }}\omega_{p_{2}}\omega_{p_{5}}}} \\ &&+\mathcal{M}_{s_{4}s_{5}s_{4}^{\prime }s_{5}^{\prime }}^{A }(\mathbf{p}_{4},\mathbf{p}_{5},{\mathbf{p}_{4}^{\prime }},{\mathbf{p}_{5}^{\prime }})\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{6}^{\prime }s_{6}}\delta^{3}_{\mathbf{p}_{1},{\mathbf{p}_{1}^{\prime }}}\delta_{\mathbf{p}_{2},\mathbf{p}_{2}^{\prime }}^{3}\delta_{\mathbf{p}_{3},\mathbf{p}_{3}^{\prime }}^{3}\delta_{\mathbf{p}_{6},\mathbf{p}_{6}^{\prime }}^{3}\frac{\delta^{3}(\mathbf{p}_{4}^{\prime }+\mathbf{p}_{5}^{\prime }-\mathbf{p}_{4}- \mathbf{p}_{5})}{\sqrt{\omega_{p_{4}^{\prime }}\omega_{p_{5}^{\prime }}\omega_{p_{4}}\omega_{p_{5}}}} \\ &&+\mathcal{M}_{s_{1}s_{6}s_{1}^{\prime }s_{6}^{\prime }}^{A }(\mathbf{p}_{1},\mathbf{p}_{6},\mathbf{p}_{1}^{\prime },\mathbf{p}_{6}^{\prime })\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta_{\mathbf{p}_{2},\mathbf{p}_{2}^{\prime }}^{3}\delta_{\mathbf{p}_{3},\mathbf{p}_{3}^{\prime }}^{3}\delta_{\mathbf{p}_{4},\mathbf{p}_{4}^{\prime }}^{3}\delta_{\mathbf{p}_{5},\mathbf{p}_{5}^{\prime }}^{3}\frac{\delta^{3}(\mathbf{p}_{1}^{\prime }+\mathbf{p}_{6}^{\prime }-\mathbf{p}_{1}- \mathbf{p}_{6})}{\sqrt{\omega_{p_{1}^{\prime }}\omega_{p_{6}^{\prime }}\omega_{p_{1}}\omega_{p_{6}}}} \\ &&+\mathcal{M}_{s_{3}s_{6}s_{3}^{\prime }s_{6}^{\prime }}^{A }(\mathbf{p}_{3},\mathbf{p}_{6},\mathbf{p}_{3}^{\prime },\mathbf{p}_{6}^{\prime })\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta_{\mathbf{p}_{1},\mathbf{p}_{1}^{\prime }}^{3}\delta_{\mathbf{p}_{2},\mathbf{p}_{2}^{\prime }}^{3}\delta_{\mathbf{p}_{4},\mathbf{p}_{4}^{\prime }}^{3}\delta_{\mathbf{p}_{5},\mathbf{p}_{5}^{\prime }}^{3}\frac{\delta^{3}(\mathbf{p}_{3}^{\prime }+\mathbf{p}_{6}^{\prime }-\mathbf{p}_{3}- \mathbf{p}_{6})}{\sqrt{\omega_{p_{3}^{\prime }}\omega_{p_{6}^{\prime }}\omega_{p_{3}}\omega_{p_{6}}}} \\ &&+\mathcal{M}_{s_{5}s_{6}s_{5}^{\prime }s_{6}^{\prime }}^{A }(\mathbf{p}_{5},\mathbf{p}_{6},\mathbf{p}_{5}^{\prime },\mathbf{p}_{6}^{\prime })\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{\mathbf{p}_{1},\mathbf{p}_{1}^{\prime }}^{3}\delta_{\mathbf{p}_{2},\mathbf{p}_{2}^{\prime }}^{3}\delta_{\mathbf{p}_{3},\mathbf{p}_{3}^{\prime }}^{3}\delta_{\mathbf{p}_{4},\mathbf{p}_{4}^{\prime }}^{3}\frac{\delta^{3}(\mathbf{p}_{5}^{\prime }+\mathbf{p}_{6}^{\prime }-\mathbf{p}_{5}- \mathbf{p}_{6})}{\sqrt{\omega_{p_{5}^{\prime }}\omega_{p_{6}^{\prime }}\omega_{p_{5}}\omega_{p_{6}}}} \\ &&-\mathcal{M}_{s_{1}s_{3}s_{1}^{\prime }s_{3}^{\prime }}^{Repulsive}(\mathbf{p}_{1},\mathbf{p}_{3},\mathbf{p}_{1}^{\prime },\mathbf{ p}_{3}^{\prime })~\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{4}^{\prime }s_{4}}~\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}\delta_{\mathbf{p}_{2},\mathbf{p}_{2}^{\prime }}^{3}\delta_{\mathbf{p}_{4},\mathbf{p}_{4}^{\prime }}^{3}\delta_{\mathbf{p}_{5},\mathbf{p}_{5}^{\prime }}^{3}\delta_{\mathbf{p}_{6},\mathbf{p}_{6}^{\prime }}^{3}\frac{\delta^{3}(\mathbf{p}_{1}^{\prime }+\mathbf{p}_{3}^{\prime }-\mathbf{p}_{1}- \mathbf{p}_{3})}{\sqrt{\omega_{p_{1}^{\prime }}\omega_{p_{3}^{\prime }}\omega_{p_{1}}\omega_{p_{3}}}} \\ &&-\mathcal{M}_{s_{2}s_{4}s_{2}^{\prime }s_{4}^{\prime }}^{Repulsive}(\mathbf{p}_{2},\mathbf{p}_{4},\mathbf{p}_{2}^{\prime },\mathbf{ p}_{4}^{\prime })~\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}\delta_{\mathbf{p}_{1},\mathbf{p}_{1}^{\prime }}^{3}\delta_{\mathbf{p}_{3},\mathbf{p}_{3}^{\prime }}^{3}\delta_{\mathbf{p}_{5},\mathbf{p}_{5}^{\prime }}^{3}\delta_{\mathbf{p}_{6},\mathbf{p}_{6}^{\prime }}^{3}\frac{\delta^{3}(\mathbf{p}_{2}^{\prime }+\mathbf{p}_{4}^{\prime }-\mathbf{p}_{2}- \mathbf{p}_{4})}{\sqrt{\omega_{p_{2}^{\prime }}\omega_{p_{4}^{\prime }}\omega_{p_{2}}\omega_{p_{4}}}} \\ &&-\mathcal{M}_{s_{1}s_{5}s_{1}^{\prime }s_{5}^{\prime }}^{Repulsive}(\mathbf{p}_{1},\mathbf{p}_{5},\mathbf{p}_{1}^{\prime },\mathbf{ p}_{5}^{\prime })~\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{6}^{\prime }s_{6}}\delta_{\mathbf{p}_{2},\mathbf{p}_{2}^{\prime }}^{3}\delta_{\mathbf{p}_{3},\mathbf{p}_{3}^{\prime }}^{3}\delta_{\mathbf{p}_{4},\mathbf{p}_{4}^{\prime }}^{3}\delta_{\mathbf{p}_{6},\mathbf{p}_{6}^{\prime }}^{3}\frac{\delta^{3}(\mathbf{p}_{1}^{\prime }+\mathbf{p}_{5}^{\prime }-\mathbf{p}_{1}- \mathbf{p}_{5})}{\sqrt{\omega_{p_{1}^{\prime }}\omega_{p_{5}^{\prime }}\omega_{p_{1}}\omega_{p_{5}}}} \\ &&-\mathcal{M}_{s_{3}s_{5}s_{3}^{\prime }s_{5}^{\prime }}^{Repulsive}(\mathbf{p}_{3},\mathbf{p}_{5},\mathbf{p}_{3}^{\prime },\mathbf{ p}_{5}^{\prime })\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{6}^{\prime }s_{6}}\delta^{3}_{\mathbf{p}_{1},{\mathbf{p}_{1}^{\prime }}}\delta^{3}_{{\mathbf{p}_{2}},{\mathbf{p}_{2}^{\prime }}}\delta_{{\mathbf{p}_{4}},\mathbf{p}_{4}^{\prime }}^{3}\delta^{3}_{\mathbf{p}_{6},{\mathbf{p}_{6}^{\prime }}}\frac{\delta^{3}({\mathbf{p}_{3}^{\prime }}+{\mathbf{p}_{5}^{\prime }}-\mathbf{p}_{3}- \mathbf{p}_{5})}{\sqrt{\omega_{p_{3}^{\prime }}\omega_{p_{5}^{\prime }}\omega_{p_{3}}\omega_{p_{5}}}} \\ &&-\mathcal{M}_{s_{2}s_{4}s_{2}^{\prime }s_{4}^{\prime }}^{Repulsive}(\mathbf{p}_{2},\mathbf{p}_{6},\mathbf{p}_{2}^{\prime },\mathbf{ p}_{6}^{\prime })~\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta_{\mathbf{p}_{1},\mathbf{p}_{1}^{\prime }}^{3}\delta_{\mathbf{p}_{3},\mathbf{p}_{3}^{\prime }}^{3}\delta^{3}_{{\mathbf{p}_{4}},{\mathbf{p}_{4}^{\prime }}}\delta^{3}_{\mathbf{p}_{5},{\mathbf{p}_{5}^{\prime }}}\frac{\delta^{3}(\mathbf{p}_{2}^{\prime }+{\mathbf{p}_{6}^{\prime }}-\mathbf{p}_{2}- \mathbf{p}_{6})}{\sqrt{\omega_{p_{2}^{\prime }}\omega_{p_{6}^{\prime }}\omega_{p_{2}}\omega_{p_{6}}}} \\ &&\left.-\mathcal{M}_{s_{4}s_{6}s_{4}^{\prime }s_{6}^{\prime }}^{Repulsive}(\mathbf{p}_{4},\mathbf{p}_{6},{\mathbf{p}_{4}^{\prime }},{\mathbf{ p}_{6}^{\prime }})~\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{5}^{\prime }s_{5}}\delta_{\mathbf{p}_{1},\mathbf{p}_{1}^{\prime }}^{3}\delta_{{\mathbf{p}_{2}},\mathbf{p}_{2}^{\prime }}^{3}\delta_{{\mathbf{p}_{3}},\mathbf{p}_{3}^{\prime }}^{3}\delta_{{\mathbf{p}_{5}},\mathbf{p}_{5}^{\prime }}^{3}\frac{\delta^{3}({\mathbf{p}_{4}^{\prime }}+{\mathbf{p}_{6}^{\prime }} - \mathbf{p}_{4} - \mathbf{p}_{6})}{\sqrt{\omega_{p_{4}^{\prime }}\omega_{p_{6}^{\prime }}\omega_{p_{4}}\omega_{p_{6}}}}\right\}, \\&& \end{array} $$
(94)

where we let \({\mathscr{M}}_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}^{A}(\mathbf {p}_{1},\mathbf {p}_{2},\mathbf {p}_{1}^{\prime },\mathbf { p}_{2}^{\prime })={\mathscr{M}}_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}^{Attractive}(\mathbf {p}_{1},\mathbf {p}_{2},\mathbf {p}_{1}^{\prime },{\mathbf {p}_{2}^{\prime }})-{\mathscr{M}}_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}^{Annihilation}\)\((\mathbf {p}_{1}, \mathbf {p}_{2},{\mathbf {p}_{1}^{\prime }},{\mathbf {p}_{2}^{\prime }})\), and etc. The expressions for \({\mathscr{M}}_{s_{j}s_{k}s_{j}^{\prime }s_{k}^{\prime }}^{Attractive}\), \({\mathscr{M}}_{s_{j}s_{k}s_{j}^{\prime }s_{k}^{\prime }}^{Repulsive}\), and \({\mathscr{M}}_{s_{j}s_{k}s_{j}^{\prime }s_{k}^{\prime }}^{Annihilation}\) have been provide in the main text in (22), (23) and (24). Also, the notation, for example, \(\delta ^{3}_{{\mathbf {p}_{1}},{\mathbf {p}_{1}^{\prime }}}\) (and similar delta functions) in the above equation means the following: (\(\delta ^{3}_{\mathbf {p}_{1},{\mathbf {p}_{1}^{\prime }}}\)\(=\delta ^{3}({\mathbf {p}_{1}^{\prime }}-\mathbf {p}_{1})\)).

For the non relativistic equation of the six-body system, for example (Ps3, eβˆ’e+eβˆ’e+eβˆ’e+), in the momentum space we have the following expression:

$$ \begin{array}{@{}rcl@{}} &&F_{s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p} _{3},\mathbf{p}_{4},\mathbf{p}_{5},\mathbf{p}_{6})\left[ \frac{\mathbf{p} _{1}^{2}}{2m}+\frac{\mathbf{p}_{2}^{2}}{2m}+\frac{\mathbf{p}_{3}^{2}}{2m}+ \frac{\mathbf{p}_{4}^{2}}{2m}+\frac{\mathbf{p}_{5}^{2}}{2m}+\frac{\mathbf{p} _{6}^{2}}{2m}-\epsilon_{6}\right] \\ &=&\frac{e^{2}}{(2\pi )^{3}}\underset{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}{\sum }\int d^{3}p_{1}^{\prime }d^{3}p_{2}^{\prime }d^{3}p_{3}^{\prime }d^{3}p_{4}^{\prime }d^{3}p_{5}^{\prime }d^{3}p_{6}F_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}(\mathbf{p}_{1}^{\prime },\mathbf{p}_{2}^{\prime },\mathbf{p}_{3}^{\prime },\mathbf{p}_{4}^{\prime },\mathbf{p}_{5}^{\prime },\mathbf{p}_{6}^{\prime })\times \\ &&\left[\left( \frac{\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}s_{2}^{\prime }}}{\mathbf{|p}_{1}^{\prime }\mathbf{-p}_{1}\mathbf{|}^{2}}-\frac{A_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}}{4m^{2}}\right) \delta_{s_{3}^{\prime }s_{3}} \delta_{s_{4}^{\prime }s_{4}} \delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}\delta_{\mathbf{p} _{3}^{\prime },\mathbf{p}_{3}}^{3}\delta_{\mathbf{p}_{4}^{\prime },\mathbf{p }_{4}}^{3}\delta_{\mathbf{p}_{5}^{\prime },\mathbf{p}_{5}}^{3}\delta_{\mathbf{p}_{6}^{\prime },\mathbf{p}_{6}}^{3}\delta^{3}(\mathbf{p}_{1}^{\prime }+\mathbf{p}_{2}^{\prime }-\mathbf{p}_{1}-\mathbf{p}_{2})\right. \\ &&+\left( \frac{\delta_{s_{2}s_{2}^{\prime }}\delta_{s_{3}^{\prime }s_{3}} }{\mathbf{|p}_{2}^{\prime }\mathbf{-p}_{2}\mathbf{|}^{2}}-\frac{ A_{s_{2}s_{3}s_{2}^{\prime }s_{3}^{\prime }}}{4m^{2}}\right) \delta_{s_{1}^{\prime }s_{1}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}\delta_{\mathbf{p}_{1}^{\prime }, \mathbf{p}_{1}}^{3}\delta_{\mathbf{p}_{4}^{\prime },\mathbf{p}_{4}}^{3}\delta_{\mathbf{p}_{5}^{\prime },\mathbf{p}_{5}}^{3}\delta_{\mathbf{p}_{6}^{\prime },\mathbf{p}_{6}}^{3}\delta^{3}(\mathbf{p}_{2}^{\prime }+\mathbf{p}_{3}^{\prime }-\mathbf{p}_{2}-\mathbf{p}_{3}) \\ &&+\left( \frac{\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}} }{\mathbf{|p}_{3}^{\prime }\mathbf{-p}_{3}\mathbf{|}^{2}}-\frac{ A_{s_{3}s_{4}s_{3}^{\prime }s_{4}^{\prime }}}{4m^{2}}\right) \delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}~\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}\delta_{\mathbf{p}_{1}^{\prime }, \mathbf{p}_{1}}^{3}\delta_{\mathbf{p}_{2}^{\prime },\mathbf{p}_{2}}^{3}\delta_{\mathbf{p}_{5}^{\prime },\mathbf{p}_{5}}^{3}\delta_{\mathbf{p}_{6}^{\prime },\mathbf{p}_{6}}^{3}\delta^{3}(\mathbf{p}_{3}^{\prime }+\mathbf{p}_{4}^{\prime }-\mathbf{p}_{3}-\mathbf{p}_{4}) \\ &&+\left( \frac{\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{4}^{\prime }s_{4}} }{\mathbf{|p}_{1}^{\prime }\mathbf{-p}_{1}\mathbf{|}^{2}}-\frac{ A_{s_{1}s_{4}s_{1}^{\prime }s_{4}^{\prime }}}{4m^{2}}\right) \delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}\delta_{\mathbf{p}_{2}^{\prime }, \mathbf{p}_{2}}^{3}\delta_{\mathbf{p}_{3}^{\prime },\mathbf{p}_{3}}^{3}\delta_{\mathbf{p}_{5}^{\prime },\mathbf{p}_{5}}^{3}\delta_{\mathbf{p}_{6}^{\prime },\mathbf{p}_{6}}^{3}\delta^{3}(\mathbf{p}_{1}^{\prime }+\mathbf{p}_{4}^{\prime }-\mathbf{p}_{1}-\mathbf{p}_{4}) \\ &&+\left( \frac{\delta_{s_{2}s_{2}^{\prime }}\delta_{s_{5}^{\prime }s_{5}} }{\mathbf{|p}_{2}^{\prime }\mathbf{-p}_{2}\mathbf{|}^{2}}-\frac{ A_{s_{2}s_{5}s_{2}^{\prime }s_{5}^{\prime }}}{4m^{2}}\right) \delta_{s_{1}^{\prime }s_{1}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{6}^{\prime }s_{6}}\delta_{\mathbf{p}_{1}^{\prime }, \mathbf{p}_{1}}^{3}\delta_{\mathbf{p}_{3}^{\prime },\mathbf{p}_{3}}^{3}\delta_{\mathbf{p}_{4}^{\prime },\mathbf{p}_{4}}^{3}\delta_{\mathbf{p}_{6}^{\prime },\mathbf{p}_{6}}^{3}\delta^{3}(\mathbf{p}_{2}^{\prime }+\mathbf{p}_{5}^{\prime }-\mathbf{p}_{2}-\mathbf{p}_{5}) \\ &&+\left( \frac{\delta_{s_{4}s_{4}^{\prime }}\delta_{s_{5}^{\prime }s_{5}} }{\mathbf{|p}_{4}^{\prime }\mathbf{-p}_{4}\mathbf{|}^{2}}-\frac{ A_{s_{4}s_{5}s_{4}^{\prime }s_{5}^{\prime }}}{4m^{2}}\right) \delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{6}^{\prime }s_{6}}\delta_{\mathbf{p}_{1}^{\prime }, \mathbf{p}_{1}}^{3}\delta_{\mathbf{p}_{2}^{\prime },\mathbf{p}_{2}}^{3}\delta_{\mathbf{p}_{3}^{\prime },\mathbf{p}_{3}}^{3}\delta_{\mathbf{p}_{6}^{\prime },\mathbf{p}_{6}}^{3}\delta^{3}(\mathbf{p}_{4}^{\prime }+\mathbf{p}_{5}^{\prime }-\mathbf{p}_{4}-\mathbf{p}_{5}) \\ &&+\left( \frac{\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{6}^{\prime }s_{6}} }{\mathbf{|p}_{1}^{\prime }\mathbf{-p}_{1}\mathbf{|}^{2}}-\frac{ A_{s_{1}s_{6}s_{1}^{\prime }s_{6}^{\prime }}}{4m^{2}}\right) \delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta_{\mathbf{p}_{2}^{\prime }, \mathbf{p}_{2}}^{3}\delta_{\mathbf{p}_{3}^{\prime },\mathbf{p}_{3}}^{3}\delta_{\mathbf{p}_{4}^{\prime },\mathbf{p}_{4}}^{3}\delta_{\mathbf{p}_{5}^{\prime },\mathbf{p}_{5}}^{3}\delta^{3}(\mathbf{p}_{1}^{\prime }+\mathbf{p}_{6}^{\prime }-\mathbf{p}_{1}-\mathbf{p}_{6}) \\&&+\left( \frac{\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{6}^{\prime }s_{6}} }{\mathbf{|p}_{3}^{\prime }\mathbf{-p}_{3}\mathbf{|}^{2}}-\frac{ A_{s_{3}s_{6}s_{3}^{\prime }s_{6}^{\prime }}}{4m^{2}}\right) \delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta_{\mathbf{p}_{1}^{\prime }, \mathbf{p}_{1}}^{3}\delta_{\mathbf{p}_{2}^{\prime },\mathbf{p}_{2}}^{3}\delta_{\mathbf{p}_{4}^{\prime },\mathbf{p}_{4}}^{3}\delta_{\mathbf{p}_{5}^{\prime },\mathbf{p}_{5}}^{3}\delta^{3}(\mathbf{p}_{3}^{\prime }+\mathbf{p}_{6}^{\prime }-\mathbf{p}_{3}-\mathbf{p}_{6}) \\ &&+\left( \frac{\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}} }{\mathbf{|p}_{5}^{\prime }\mathbf{-p}_{5}\mathbf{|}^{2}}-\frac{ A_{s_{3}s_{6}s_{3}^{\prime }s_{6}^{\prime }}}{4m^{2}}\right) \delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{\mathbf{p}_{1}^{\prime }, \mathbf{p}_{1}}^{3}\delta_{\mathbf{p}_{2}^{\prime },\mathbf{p}_{2}}^{3}\delta_{\mathbf{p}_{3}^{\prime },\mathbf{p}_{3}}^{3}\delta_{\mathbf{p}_{4}^{\prime },\mathbf{p}_{4}}^{3}\delta^{3}(\mathbf{p}_{5}^{\prime }+\mathbf{p}_{6}^{\prime }-\mathbf{p}_{5}-\mathbf{p}_{6}) \\ &&-\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}\delta_{\mathbf{p}_{2}^{\prime }, \mathbf{p}_{2}}^{3}\delta_{\mathbf{p}_{4}^{\prime },\mathbf{p}_{4}}^{3}\delta_{\mathbf{p}_{5}^{\prime },\mathbf{p}_{5}}^{3}\delta_{ \mathbf{p}_{6}^{\prime },\mathbf{p}_{6}}^{3}\frac{\delta^{3}(\mathbf{p}_{1}^{\prime }+\mathbf{p}_{3}^{\prime }-\mathbf{p}_{1}-\mathbf{p}_{3})}{ \mathbf{|p}_{1}^{\prime }\mathbf{-p}_{1}\mathbf{|}^{2}} \\ &&-\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}\delta_{\mathbf{p}_{1}^{\prime }, \mathbf{p}_{1}}^{3}\delta_{\mathbf{p}_{3}^{\prime },\mathbf{p}_{3}}^{3}\delta_{\mathbf{p}_{5}^{\prime },\mathbf{p}_{5}}^{3}\delta_{ \mathbf{p}_{6}^{\prime },\mathbf{p}_{6}}^{3}\frac{\delta^{3}(\mathbf{p}_{2}^{\prime }+\mathbf{p}_{4}^{\prime }-\mathbf{p}_{2}-\mathbf{p}_{4})}{ \mathbf{|p}_{2}^{\prime }\mathbf{-p}_{2}\mathbf{|}^{2}} \\ &&-\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}\delta_{\mathbf{p}_{2}^{\prime }, \mathbf{p}_{2}}^{3}\delta_{\mathbf{p}_{3}^{\prime },\mathbf{p}_{3}}^{3}\delta_{\mathbf{p}_{4}^{\prime },\mathbf{p}_{4}}^{3}\delta_{ \mathbf{p}_{6}^{\prime },\mathbf{p}_{6}}^{3}\frac{\delta^{3}(\mathbf{p}_{1}^{\prime }+\mathbf{p}_{5}^{\prime }-\mathbf{p}_{1}-\mathbf{p}_{5})}{ \mathbf{|p}_{1}^{\prime }\mathbf{-p}_{1}\mathbf{|}^{2}} \\ &&-\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{6}^{\prime }s_{6}}\delta_{\mathbf{p}_{1}^{\prime }, \mathbf{p}_{1}}^{3}\delta_{\mathbf{p}_{2}^{\prime },\mathbf{p}_{2}}^{3}\delta_{\mathbf{p}_{4}^{\prime },\mathbf{p}_{4}}^{3}\delta_{ \mathbf{p}_{6}^{\prime },\mathbf{p}_{6}}^{3}\frac{\delta^{3}(\mathbf{p}_{3}^{\prime }+\mathbf{p}_{5}^{\prime }-\mathbf{p}_{3}-\mathbf{p}_{5})}{ \mathbf{|p}_{3}^{\prime }\mathbf{-p}_{3}\mathbf{|}^{2}} \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&{}-\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}\delta_{\mathbf{p}_{1}^{\prime }, \mathbf{p}_{1}}^{3}\delta_{\mathbf{p}_{3}^{\prime },\mathbf{p}_{3}}^{3}\delta_{\mathbf{p}_{4}^{\prime },\mathbf{p}_{4}}^{3}\delta_{ \mathbf{p}_{5}^{\prime },\mathbf{p}_{5}}^{3}\frac{\delta^{3}(\mathbf{p}_{2}^{\prime }+\mathbf{p}_{6}^{\prime }-\mathbf{p}_{2}-\mathbf{p}_{6})}{ \mathbf{|p}_{2}^{\prime }\mathbf{-p}_{2}\mathbf{|}^{2}} \\ &&{}\left.-\delta_{s_{1}s_{1}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}\delta_{\mathbf{p}_{1}^{\prime }, \mathbf{p}_{1}}^{3}\delta_{\mathbf{p}_{2}^{\prime },\mathbf{p}_{2}}^{3}\delta_{\mathbf{p}_{3}^{\prime },\mathbf{p}_{3}}^{3}\delta_{ \mathbf{p}_{5}^{\prime },\mathbf{p}_{5}}^{3}\frac{\delta^{3}(\mathbf{p}_{4}^{\prime }+\mathbf{p}_{6}^{\prime }-\mathbf{p}_{4}-\mathbf{p}_{6})}{ \mathbf{|p}_{4}^{\prime }\mathbf{-p}_{4}\mathbf{|}^{2}}\right] \end{array} $$
(95)

where we let πœ–6 = E βˆ’β€‰6m. Its coordinate-space version is the six-body SchrΓΆdinger equation, (see (31) with n = 6). In the coordinate space, the six-body equation becomes as the following:

$$ \begin{array}{@{}rcl@{}} &&\left\{-\frac{1}{2m}\left( {{\sum}_{i=1}^{6}{\nabla_{i}^{2}}}\right) -\epsilon_{6}-\frac{\alpha }{|\mathbf{x}_{1}-\mathbf{x}_{2}|}-\frac{\alpha }{|\mathbf{x}_{2}-\mathbf{x}_{3}|} - \frac{\alpha }{|\mathbf{x}_{3}-\mathbf{x} _{4}|} - \frac{\alpha }{|\mathbf{x}_{1}-\mathbf{x}_{4}|} - \frac{\alpha }{| \mathbf{x}_{2}-\mathbf{x}_{5}|}\right.\\ &&-\frac{\alpha }{|\mathbf{x}_{4}-\mathbf{x}_{5}|}-\frac{\alpha }{|\mathbf{x} _{1}-\mathbf{x}_{6}|}-\frac{\alpha }{|\mathbf{x}_{3}-\mathbf{x}_{6}|}-\frac{ \alpha }{|\mathbf{x}_{5}-\mathbf{x}_{6}|} + \frac{\alpha }{|\mathbf{x}_{1}- \mathbf{x}_{3}|} + \frac{\alpha }{|\mathbf{x}_{2}-\mathbf{x}_{4}|} + \frac{ \alpha }{|\mathbf{x}_{1}-\mathbf{x}_{5}|} \\ && \left. +\frac{\alpha }{|\mathbf{x}_{3}-\mathbf{x}_{5}|}+\frac{\alpha }{|\mathbf{x} _{2}-\mathbf{x}_{6}|}+\frac{\alpha }{|\mathbf{x}_{4}-\mathbf{x}_{6}|}\right\} {\Psi}_{s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{ x}_{3},\mathbf{x}_{4},\mathbf{x}_{5},\mathbf{x}_{6}) \\ &=&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{1}-\mathbf{x}_{2})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}{\sum }A_{s_{1}s_{2}s_{1}^{\prime }s_{2}^{\prime }}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4},\mathbf{x}_{5},\mathbf{x} _{6}) \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{2}-\mathbf{x}_{3})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}{\sum }A_{s_{2}s_{3}s_{2}^{\prime }s_{3}^{\prime }}\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4},\mathbf{x}_{5},\mathbf{x} _{6}) \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{3}-\mathbf{x}_{4})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}{\sum }A_{s_{3}s_{4}s_{3}^{\prime }s_{4}^{\prime }}\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4},\mathbf{x}_{5},\mathbf{x} _{6}) \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{1}-\mathbf{x}_{4})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}{\sum }A_{s_{1}s_{4}s_{1}^{\prime }s_{4}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{5}^{\prime }s_{5}}\delta_{s_{6}^{\prime }s_{6}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4},\mathbf{x}_{5},\mathbf{x} _{6}) \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{2}-\mathbf{x}_{5})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}{\sum }A_{s_{2}s_{5}s_{2}^{\prime }s_{5}^{\prime }}\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{6}^{\prime }s_{6}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4},\mathbf{x}_{5},\mathbf{x} _{6}) \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{4}-\mathbf{x}_{5})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}{\sum }A_{s_{4}s_{5}s_{4}^{\prime }s_{5}^{\prime }}\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{6}^{\prime }s_{6}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4},\mathbf{x}_{5},\mathbf{x} _{6}) \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{1}-\mathbf{x}_{6})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}{\sum }A_{s_{1}s_{6}s_{1}^{\prime }s_{6}^{\prime }}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4},\mathbf{x}_{5},\mathbf{x} _{6}) \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{3}-\mathbf{x}_{6})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}{\sum }A_{s_{3}s_{6}s_{3}^{\prime }s_{6}^{\prime }}\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{4}^{\prime }s_{4}}\delta_{s_{5}^{\prime }s_{5}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4},\mathbf{x}_{5},\mathbf{x} _{6}) \\ &&-\frac{\alpha \pi }{m^{2}}\delta (\mathbf{x}_{5}-\mathbf{x}_{6})\underset{ s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}{\sum }A_{s_{5}s_{6}s_{5}^{\prime }s_{6}^{\prime }}\delta_{s_{1}^{\prime }s_{1}}\delta_{s_{2}^{\prime }s_{2}}\delta_{s_{3}^{\prime }s_{3}}\delta_{s_{4}^{\prime }s_{4}}{\Psi}_{s_{1}^{\prime }s_{2}^{\prime }s_{3}^{\prime }s_{4}^{\prime }s_{5}^{\prime }s_{6}^{\prime }}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4},\mathbf{x}_{5},\mathbf{x} _{6})\\ \end{array} $$
(96)

The interactions are expressed by attractive or repulsive Coulomb potentials in the left hand side of the equation and the repulsive contact virtual annihilation interactions (various delta functions in the right hand side of the above equation). For a system such as (Ps3, eβˆ’e+eβˆ’e+eβˆ’e+) we have nine attractive terms, six repulsive terms,and nine virtual annihilation interactions, namely the terms that contain some delta functions [ex: Ξ΄(x1 βˆ’x2) factor in the first term of the right hand side expressions of the (96) describes the virtual annihilation interaction between the first particle (eβˆ’) and the second particle (e+) in Ps3].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami-Razavi, M. Some Remarks About Virtual Annihilation Interactions in Relativistic n-Body Wave Equations in QED. Int J Theor Phys 59, 2321–2353 (2020). https://doi.org/10.1007/s10773-020-04503-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04503-3

Keywords

Navigation