Skip to main content
Log in

Implementation of an E-Payment Security Evaluation System Based on Quantum Blind Computing

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

E-payment has gradually become the mainstream globally in recent years. However, the security and anonymity of the traditional E-payment system are not perfectly guaranteed with the emergence of the quantum computer. In this paper, an E-payment security evaluation system based on quantum blind computing is proposed for evaluating the security of network transactions. Unitary operations and four-qubit cluster state are applied in this system to effectively defend against eavesdroppers. And a shared blind matrix used to encrypt the security scores prevents the curious third-party payment platform from obtaining the private data of users. Furthermore, our system guarantees that users cannot tamper with or disguise their security scores during transactions. We demonstrate the correctness and security of the system in detail and provide theoretical support for its extension to more types of evaluation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chaum, D.: Blind signatures for untraceable payments. In: Advances in cryptology, pp 199–203. Springer (1983)

  2. Kim, C., Tao, W., Shin, N., Kim, Ki-Soo: An empirical study of customers’ perceptions of security and trust in e-payment systems. Electron. Commer. Res. Appl. 9(1), 84–95 (2010)

    Google Scholar 

  3. Cai, X.Q., Wei, C.Y.: Cryptanalysis of an inter-bank e-payment protocol based on quantum proxy blind signature. Quantum Inf. Process 12(4), 1651–1657 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Zhang, H.-Y.: Research on security and development of electronic payment. Modern Marketing (Information Edition)(01), 223 (2020)

  5. Asokan, N., Janson, P.A, Steiner, M., Waidner, M.: The state of the art in electronic payment systems. Computer 30(9), 28–35 (1997)

    Google Scholar 

  6. Wen, X., Chen, Y., Fang, J.: An inter-bank e-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12(1), 549–558 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Teoh, W.M.-Y., Chong, S.C., Lin, B., Chua, J.W.: Factors affecting consumers’ perception of electronic payment: an empirical analysis. Int. Res. (2013)

  8. Fernando, L., Rafii, A., Williams, N., Bunn, E.A, Valliani, A.: Modular signature and data-capture system and point of transaction payment and reward system. US Patent, (6,193,152) (2001)

  9. Vakhitov, A., Makarov, V., Hjelme, D.R: Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. Journal of modern optics 48(13), 2023–2038 (2001)

    ADS  MATH  Google Scholar 

  10. Makarov, V., Hjelme, D.R: Faked states attack on quantum cryptosystems. J. Mod. Opt. 52(5), 691–705 (2005)

    ADS  Google Scholar 

  11. Jain, N., Stiller, B., Khan, I., Elser, D., Marquardt, C., Leuchs, G.: Attacks on practical quantum key distribution systems (and how to prevent them). Contemp. Phys. 57(3), 366–387 (2016)

    ADS  Google Scholar 

  12. Horoshko, D., Kilin, S.: Quantum anonymous voting with anonymity check. Phys. Lett. A 375(8), 1172–1175 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Niu, X.-F., Zhang, J.-Z., Xie, S.-C., Chen, B.-Q.: A third-party e-payment protocol based on quantum multi-proxy blind signature. Int. J. Theor. Phys. 57(8), 2563–2573 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Tiliwalidi, K., Zhang, J.-Z., Xie, S.-C.: A multi-bank e-payment protocol based on quantum proxy blind signature. Int. J. Theor. Phys. 58(10), 3510–3520 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Bierbaum, C.J, Cope, W.B, Katzer, R.D, Paczkowski, L.W: Electronic payment using a proxy account number stored in a secure element. US Patent, (8,566,168) (2013)

  16. Rowney, K.T.B., Nadig, D.S: System, method and article of manufacture for secure network electronic payment and credit collection. US Patent, (5,987,140) (1999)

  17. Resnick, D., Callanan, M.J: Electronic payment system utilizing intermediary account. US Patent, (6,185,545) (2001)

  18. Cho, B.H., Ki, B.K., Cho, B.S.: Payment system, electronic device and payment method thereof. US Patent, (10,521,789) (2019)

  19. Yin, W., Wen, Q., Li, W., Zhang, H., Jin, Z.: An anti-quantum transaction authentication approach in blockchain. IEEE Access 6, 5393–5401 (2018)

    Google Scholar 

  20. Wiesner, S.: Conjugate coding. ACM Sigact News 15(1), 78–88 (1983)

    MATH  Google Scholar 

  21. Cai, X.-Q., Wang, X.-X., Wang, T.-Y.: Fair and optimistic contract signing based on quantum cryptography. Int. J. Theor. Phys. (2019)

  22. Wang, T.Y., Ma, J.F., Cai, X.Q.: The postprocessing of quantum digital signatures. Quantum Inf. Process 16(1), 19 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Briegel, H.J, Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910 (2001)

    ADS  Google Scholar 

  25. Cao, C., Wang, C., He, L.Y., Zhang, R.: Atomic entanglement purification and concentration using coherent state input-output process in low-q cavity qed regime. Opt. Express 21(4), 4093 (2013)

    ADS  Google Scholar 

  26. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 44305–0 (2010)

    ADS  Google Scholar 

  27. Humphreys, P.C, Kalb, N., Morits, Jaco P.J, Schouten, R.N, Vermeulen, R.F.L., Twitchen, D.J, Markham, M., Hanson, R.: Deterministic delivery of remote entanglement on a quantum network. Nature 558(7709), 268–273 (2018)

    ADS  Google Scholar 

  28. Martin, L.S., Whaley, K.B.: Single-shot deterministic entanglement between non-interacting systems with linear optics. arXiv preprint arXiv:1912.00067 (2019)

  29. Cao, C., Chen, X., Duan, Y.W., Fan, L., Zhang, R., Wang, T.J., Wang, C.: Concentrating partially entangled w-class states on nonlocal atoms using low-qoptical cavity and linear optical elements. Sci China Phys Mech Astron 59(10), 100315 (2016)

    Google Scholar 

  30. Du, F.F., Li, T., Long, G.L.: Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction. Ann. Phys. 375, 105–118 (2016)

    ADS  MATH  Google Scholar 

  31. Wang, G.-Y., Li, T., Ai, Q., Alsaedi, A., Hayat, T., Deng, F.G.: Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubitsystems. Phys. Rev. Appl. 10(5) (2018)

  32. Yuan, H., Song, J., Zhou, J., Zhang, G., Wei, X.F.: High-capacity deterministic secure four-qubit w state protocol for quantum communication based on order rearrangement of particle pairs. Int. J. Theor. Phys. 50(8), 2403–2409 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Jeong, H., Kim, M.S.: Efficient quantum computation using coherent states. Phys. Rev. A 65(4), 042305 (2002)

    ADS  Google Scholar 

  34. Cao, C., Wang, C., Wang, T.J., Zhang, R.: Scalable quantum computation via a coherent state input-output process in a low-q cavity in the atom-cavity intermediate coupling region. Laser Phys. 23(12), 125201 (2013)

    ADS  Google Scholar 

  35. Fried, E.S., Sawaya, N.P.D., Cao, Y., Kivlichan, I.D., Romero, J., Aspuru-Guzik, A.: qtorch: The quantum tensor contraction handler. PLos ONE (2018)

  36. Brassard, G., Crépeau, C.: Quantum bit commitment and coin tossing protocols. In: Conference on the Theory and Application of Cryptography, pp 49–61. Springer (1990)

  37. Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6(01), 1–127 (2008)

    MATH  Google Scholar 

  38. Shih, H.-C., Lee, K.-C., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quantum Electron. 15(6), 1602–1606 (2009)

    ADS  Google Scholar 

  39. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    ADS  Google Scholar 

  40. Nishimura, H., Ozawa, M.: Computational complexity of uniform quantum circuit families and quantum turing machines communicated by o. watanabe. Theor. Comput. Sci. 276(1-2), 147–181 (2002)

    MATH  Google Scholar 

  41. Dumais, P., Mayers, D., Salvail, L.: Perfectly concealing quantum bit commitment from any quantum one-way permutation. In: International Conference on the Theory and Applications of Cryptographic Techniques, pp 300–315. Springer (2000)

  42. Eisert, J., Jacobs, K., Papadopoulos, P., Plenio, M.B.: Optimal local implementation of non-local quantum gates. Physics 62(5), 414–416 (2000)

    Google Scholar 

  43. Zhu, S., Wang, Z.D.: Erratum: Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 89(9) (2002), 097902 (2002)

  44. Cao, C., Duan, Y., Chen, X., Zhang, R., Wang, T., Wang, C.: Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Opt. Express 25(15), 16931–16946 (2017)

    ADS  Google Scholar 

  45. Karol, B., Cernoch, A., Lemr, K.: Implementation of an efficient linear-optical quantum router. Sci. Rep. (2018)

  46. Cao, C., Han, Y.H., Zhang, L., Fan, L., Zhang, R.: Highfidelity universal quantum controlled gates on electronspin qubits in quantum dots inside singlesided optical microcavities. Adv. Quantum Technol. 2(10) (2019)

  47. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78(17), 3414 (1997)

    ADS  Google Scholar 

  48. Wang, T.Y., Cai, X.Q., Ren, Y.L., Zhang, R.L.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)

    Google Scholar 

  49. Sun, X., Wang, Q., Kulicki, P., Sopek, M.: A simple voting protocol on quantum blockchain. Int. J. Theor. Phys. 58(1), 275–281 (2019)

    MATH  Google Scholar 

  50. Raussendorf, R., Briegel, H.J: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188 (2001)

    ADS  Google Scholar 

  51. Zhang, Q., Li, C., Li, Y., Nie, Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52(1), 22–27 (2013)

    MathSciNet  MATH  Google Scholar 

  52. Cao, W., Yang, Y., Wen, Q.: Quantum secure direct communication with cluster states. Sci. China Phys. Mech. Astron. 53(7), 1271–1275 (2010)

    ADS  Google Scholar 

  53. Sun, Z.-W., Du, R.-G., Long, Dong-Yang: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51(6), 1946–1952 (2012)

    MATH  Google Scholar 

  54. Zhang, J., Braunstein, S.L: Continuous-variable gaussian analog of cluster states. Phys. Rev. A 73(3), 032318 (2006)

    ADS  Google Scholar 

  55. Li, W., Shi, J., Shi, R., Guo, Y.: Blind quantum signature with controlled four-particle cluster states. Int. J. Theor. Phys. 56(8), 2579–2587 (2017)

    MATH  Google Scholar 

  56. Zhao, N., Li, M., Chen, N., Zhu, C., Pei, C.: Quantum teleportation of eight-qubit state via six-qubit cluster state. Int. J. Theor. Phys. 57(2), 516–522 (2018)

    MathSciNet  MATH  Google Scholar 

  57. Tan, X., Zhang, X., Fang, J.: Perfect quantum teleportation by four-particle cluster state. Inf. Process. Lett. 116(5), 347–350 (2016)

    MathSciNet  MATH  Google Scholar 

  58. Kim, J., Lee, J., Ji, S.-W., Nha, H., Anisimov, P.M, Dowling, J.P: Coherent-state optical qudit cluster state generation and teleportation via homodyne detection. Opt. Commun. 337, 79–82 (2015)

    ADS  Google Scholar 

  59. Muralidharan, S., Jain, S., Panigrahi, P.K: Splitting of quantum information using n-qubit linear cluster states. Opt. Commun. 284(4), 1082–1085 (2011)

    ADS  Google Scholar 

  60. Ma, P.-C., Zhan, Y.-B.: Scheme for remotely preparing a four-particle entangled cluster-type state. Opt. Commun. 283(12), 2640–2643 (2010)

    ADS  Google Scholar 

  61. Zhang, W., Liu, Y., Wang, Z., Zhang, Z.: Preparation of multi-atom cluster state and teleportation of arbitrary two-atom state via thermal cavity. Opt. Commun. 281(17), 4549–4552 (2008)

    ADS  Google Scholar 

  62. Li, D.-C., Cao, Z.-L.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47(3), 464 (2007)

    ADS  MathSciNet  Google Scholar 

  63. Wang, X.-W., Shan, Y.-G., Xia, L.-X., Lu, M.-W.: Dense coding and teleportation with one-dimensional cluster states. Phys. Lett. A 364(1), 7–11 (2007)

    ADS  MATH  Google Scholar 

  64. Shen, D.-S., Ma, W.-P., Wang, L.-L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13(10), 2313–2324 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  65. Zhan, Y.-B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two-and three-qubit entangled states. Quantum Inf. Process. 12(2), 997–1009 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  66. Kiesel, N., Schmid, C., Weber, U., Tóth, G., Gühne, O., Ursin, R., Weinfurter, H.: Experimental analysis of a four-qubit photon cluster state. Phys. Rev. Lett. 95(21), 210502 (2005)

    ADS  Google Scholar 

  67. Schwartz, I., Cogan, D., Schmidgall, E.R, Don, Y., Gantz, L., Kenneth, O., Lindner, N.H, Gershoni, D.: Deterministic generation of a cluster state of entangled photons. Science 354(6311), 434–437 (2016)

    ADS  Google Scholar 

  68. Dong, P., Xue, Z.-Y., Yang, M., Cao, Z.-L.: Generation of cluster states. Phys. Rev. A 73(3), 033818 (2006)

    ADS  Google Scholar 

  69. Zhang, X., Feng, M, Gao, KL: Cluster-state preparation and multipartite entanglement analyzer with fermions. Phys. Rev. A 73(1), 014301 (2006)

    ADS  Google Scholar 

  70. Feynman, R.P: Quantum mechanical computers. Found. Phys. 16 (6), 507–532 (1986)

    ADS  MathSciNet  Google Scholar 

  71. Cai, X., Wang, T., Wei, C., Gao, F.: Cryptanalysis of multiparty quantum digital signatures. Quantum Inf. Process 18(8), 252 (2019)

    ADS  MathSciNet  Google Scholar 

  72. Horsman, C., Brown, K.L, Munro, W.J, Kendon, V.M: Reduce, reuse, recycle for robust cluster-state generation. Phys. Rev. A 83(4), 042327 (2011)

    ADS  Google Scholar 

  73. Zhang, C., Huang, Y.F., Liu, B.H., Li, C.F., Guo, G.C.: Experimental generation of a high-fidelity four-photon linear cluster state. Phys. Rev. A 93(6), 062329 (2016)

    ADS  Google Scholar 

  74. Gimeno-Segovia, M., Rudolph, T., Sophia, E.: Economou Deterministic generation of large-scale entangled photonic cluster state from interacting solid state emitters. Physical review letters 123(7), 070501 (2018)

    Google Scholar 

  75. Cao, Y., Parker, I. D., Yu, G., Zhang, C., Heeger, A. J.: Improved quantum efficiency for electroluminescence in semiconducting polymers. Nature 397 (6718), 414–417 (1999)

    ADS  Google Scholar 

  76. Li, S., Wang, L., Tang, D., Cho, Y., Xuejian, L.: Achieving high quantum efficiency narrow-band beta-sialon:eu2+ phosphors for high-brightness lcd backlights by reducing the eu3+ luminescence killer. In: Chemistry of Materials a Publication of the American Chemistry Society (2018)

  77. Ajmal Khan, M., Matsumoto, T., Maeda, N., Kamata, N., Hirayama, H.: Improved external quantum efficiency of 293 nm algan uvb led grown on an aln template. Jpn. J. Appl. Phys. 58(SA) (2019)

  78. Karmalawi, A.M., Rayan, D.A., Rashad, M.M.: Establishment and evaluation of photovoltaic quantum efficiency system at central metallurgical research and development institute. Optik. 164931 (2020)

  79. Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in Quantum information Process. Sci. Bull. 62(1), 46–68 (2017)

    Google Scholar 

  80. Cao, C., Wang, T., Mi, S., Zhang, R., Wang, C.: Nonlocal hyperconcentration on entangled photons using photonic module system. Ann. Phys. 369, 128–138 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  81. Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express 22(6), 6547 (2014)

    ADS  Google Scholar 

  82. Cao, C., Zhamg, L., Han, Y., Yin, P., Fan, L., Duan, Y., Zhang, R.: Complete and faithful hyperentangled-bell-state analysis of photon systems using a failure-heralded and fidelity-robust quantum gate. Opt. Express 28(3), 2857–2872 (2020)

    ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 61701035 and the Research Innovation Fund for College Students of Beijing University of Posts and Telecommunications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Fan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, DQ., Chen, X., Han, YH. et al. Implementation of an E-Payment Security Evaluation System Based on Quantum Blind Computing. Int J Theor Phys 59, 2757–2772 (2020). https://doi.org/10.1007/s10773-020-04536-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04536-8

Keywords

Navigation