Skip to main content
Log in

Next generation sequencing reveals past and current widespread occurrence of maize yellow mosaic virus in South Africa

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Maize yellow mosaic virus (MaYMV) is a single-stranded RNA polerovirus first identified in China. MaYMV was recently reported from West and East Africa, however it had not yet been reported from southern Africa. RNA-seq data from South African field-grown fungal-infected maize was mined for viral sequences by de novo assembly of reads that did not map to the maize or fungal genomes. Predicted proteins from the de novo-assembled unmapped reads matched MaYMV proteins with regions of 96–100% identity. MaYMV was detected in maize RNAseq data from 2009, 2012 and 2013. Complete South African MaYMV genome sequences (5642 nt) were determined by RT-PCR and Sanger sequencing of samples from two different maize genotypes, years, and sites. Phylogenetic analysis confirmed the species identity as MaYMV, and showed separate clustering of isolates between Africa, Asia and South America. Some MaYMV positive samples had reads matching Potyviridae (Johnson grass mosaic virus and Sugarcane mosaic virus), and mycoviruses (Setosphaeria turcica hypovirus 1, Bipolaris maydis partitivirus 1, and Pleospora typhicola fusarivirus 1). A 2016/2017 RT-PCR survey of maize plants exhibiting virus-like symptoms, such as yellowing and streaking patterns, revealed MaYMV in 39 samples from six provinces in South Africa. This report documents the earliest known MaYMV infection world-wide, and indicates that the virus is widespread throughout Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrews, S. (2016). FastQC: A quality control application for FastQ data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 09-2018.

  • Aregbesola, E., Ortega-Beltran, A., Falade, T., Jonathan, G., Hearne, S., & Bandyopadhyay, R. (2020). A detached leaf assay to rapidly screen for resistance of maize to Bipolaris maydis, the causal agent of southern corn leaf blight. European Journal of Plant Pathology, 156(1), 133–145. https://doi.org/10.1007/s10658-019-01870-4.

    Article  CAS  Google Scholar 

  • Bernreiter, A., Garcia Teijeiro, R., Jarrin, D., Garrido, P., & Ramos, L. (2017). First report of maize yellow mosaic virus infecting maize in Ecuador. New Disease Reports, 31, 1. https://doi.org/10.5197/j.2044-0588.2017.036.011.

    Article  Google Scholar 

  • Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S., Jiang, G., Wu, J., Liu, Y., Qian, Y., & Zhou, X. (2016). Characterization of a novel Polerovirus infecting maize in China. Viruses, 8(5), 120. https://doi.org/10.3390/v8050120.

    Article  CAS  PubMed Central  Google Scholar 

  • Christie, N., Myburg, A. A., Joubert, F., Murray, S. L., Carstens, M., Lin, Y. C., Meyer, J., Crampton, B. G., Christensen, S. A., Ntuli, J. F., Wighard, S. S., van de Peer, Y., & Berger, D. K. (2017). Systems genetics reveals a transcriptional network associated with susceptibility in the maize–grey leaf spot pathosystem. The Plant Journal, 89(4), 746–763.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, K. B., Holcomb, E. E., Allscheid, R. L., & Carrington, J. C. (2019). Hiding in plain sight: New virus genomes discovered via a systematic analysis of fungal public transcriptomes. PLoS One, 14(7), e0219207. https://doi.org/10.1371/journal.pone.0219207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves, M. C., Godinho, M., Alves-Freitas, D. M. T., Varsani, A., & Ribeiro, S. G. (2017). First report of maize yellow mosaic virus infecting maize in Brazil. Plant Disease, 101(12), 2156. https://doi.org/10.1094/PDIS-04-17-0569-PDN.

    Article  Google Scholar 

  • Grisham, M. P., Johnson, R. M., & Zimba, P. V. (2010). Detecting sugarcane yellow leaf virus infection in asymptomatic leaves with hyperspectral remote sensing and associated leaf pigment changes. Journal of Virological Methods, 167(2), 140–145. https://doi.org/10.1016/j.jviromet.2010.03.024.

    Article  CAS  PubMed  Google Scholar 

  • Guadie, D., Abraham, A., Tesfaye, K., Winter, S., Menzel, W., & Knierim, D. (2018). First report of maize yellow mosaic virus infecting maize (Zea mays) in Ethiopia. Plant Disease, 102(5), 1044. https://doi.org/10.1094/PDIS-08-17-1290-PDN.

    Article  Google Scholar 

  • Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B., Eccles, D., Li, B., Lieber, M., MacManes, M. D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C. N., Henschel, R., LeDuc, R. D., Friedman, N., & Regev, A. (2013). De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nature Protocols, 8(8), 1494–1512. https://doi.org/10.1038/nprot.2013.084.

    Article  CAS  PubMed  Google Scholar 

  • Hall. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Hatting, J., Poprawski, T., & Miller, R. (2000). Prevalences of fungal pathogens and other natural enemies of cereal aphids (Homoptera: Aphididae) in wheat under dryland and irrigated conditions in South Africa. BioControl, 45(2), 179–199.

    Article  Google Scholar 

  • Ho, T., & Tzanetakis, I. E. (2014). Development of a virus detection and discovery pipeline using next generation sequencing. Virology, 471, 54–60.

    Article  PubMed  Google Scholar 

  • Hogenhout, S. A., Ammar, E.-D., Whitfield, A. E., & Redinbaugh, M. G. (2008). Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327–359.

    Article  CAS  PubMed  Google Scholar 

  • Jiao, Y., Peluso, P., Shi, J., Liang, T., Stitzer, M. C., Wang, B., Campbell, M. S., Stein, J. C., Wei, X., Chin, C. S., Guill, K., Regulski, M., Kumari, S., Olson, A., Gent, J., Schneider, K. L., Wolfgruber, T. K., May, M. R., Springer, N. M., Antoniou, E., McCombie, W. R., Presting, G. G., McMullen, M., Ross-Ibarra, J., Dawe, R. K., Hastie, A., Rank, D. R., & Ware, D. (2017). Improved maize reference genome with single-molecule technologies. Nature, 546, 524–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, S., Baizan-Edge, A., MacFarlane, S., & Torrance, L. (2017). Viral diagnostics in plants using next generation sequencing: Computational analysis in practice. Frontiers in Plant Science, 8, 1770. https://doi.org/10.3389/fpls.2017.01770.

    Article  PubMed  PubMed Central  Google Scholar 

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4), R36. https://doi.org/10.1186/gb-2013-14-4-r36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, S., Yoon, Y., Jang, Y. W., Bae, D. H., Kim, B. S., Maharjan, R., Yi, H., Bae, S., Lee, Y. H., Lee, B. C., Park, C. Y., Lee, S. H., & Moon, J. S. (2017). First report of maize yellow mosaic virus infecting Panicum miliaceum and Sorghum bicolor in South Korea. Plant Disease, 102(3), 689. https://doi.org/10.1094/PDIS-08-17-1261-PDN.

    Article  Google Scholar 

  • Massawe, D. P., Stewart, L. R., Kamatenesi, J., Asiimwe, T., & Redinbaugh, M. G. (2018). Complete sequence and diversity of a maize-associated Polerovirus in East Africa. Virus Genes, 54(3), 432–437. https://doi.org/10.1007/s11262-018-1560-5.

    Article  CAS  PubMed  Google Scholar 

  • Menzel, P., Ng, K. L., & Krogh, A. (2016). Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nature Communications, 7(1), 11257. https://doi.org/10.1038/ncomms11257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NCBI_Resource_Coordinators. (2017). Database resources of the national center for biotechnology information. Nucleic Acids Research, 45(Database issue), D12–D17.

    Article  Google Scholar 

  • Palanga, E., Longué, R., Koala, M., Néya, J., Traoré, O., Martin, D. P., et al. (2017). First report of maize yellow mosaic virus infecting maize in Burkina Faso. New Disease Reports, 35, 26. https://doi.org/10.5197/j.2044-0588.2017.035.026.

    Article  Google Scholar 

  • Ranum, P., Peña-Rosas, J. P., & Garcia-Casal, M. N. (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312(1), 105–112. https://doi.org/10.1111/nyas.12396.

    Article  PubMed  Google Scholar 

  • Read, D. A., Featherstone, J., Rees, D. J. G., Thompson, G. D., Roberts, R., Flett, B. C., et al. (2019). First report of maize yellow mosaic virus (MaYMV) on maize (Zea mays) in Tanzania. Journal of Plant Pathology, 101(1), 203. https://doi.org/10.1007/s42161-018-0152-5.

    Article  Google Scholar 

  • Singh, B., Padmaja, P., & Seetharama, N. (2004). Biology and management of the sugarcane aphid, Melanaphis sacchari (Zehntner)(Homoptera: Aphididae), in sorghum: A review. Crop Protection, 23(9), 739–755.

    Article  Google Scholar 

  • Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart, L. R., Todd, J. C., Willie, K., Massawe, D. P., & Khatri, N. (2020). A recently discovered maize polerovirus causes leaf reddening symptoms in several maize genotypes and is transmitted by both the corn leaf aphid (Rhopalosiphum maidis) and the bird cherry-oat aphid (Rhopalosiphum padi). Plant Disease, 104, 1589–1592. https://doi.org/10.1094/pdis-1009-1019-2054-sc.

    Article  PubMed  Google Scholar 

  • Swart, V., Crampton, B. G., Ridenour, J. B., Bluhm, B. H., Olivier, N. A., Meyer, J. J. M., & Berger, D. K. (2017). Complementation of CTB7 in the maize pathogen Cercospora zeina overcomes the lack of In Vitro Cercosporin production. Molecular Plant-Microbe Interactions, 30(9), 710–724. https://doi.org/10.1094/MPMI-03-17-0054-R.

    Article  CAS  PubMed  Google Scholar 

  • Van den Berg, N., Crampton, B. G., Hein, I., Birch, P. R., & Berger, D. K. (2004). High-throughput screening of suppression subtractive hybridization cDNA libraries using DNA microarray analysis. Biotechniques, 37(5), 818–824.

    Article  PubMed  Google Scholar 

  • Visser, M., Burger, J. T., & Maree, H. J. (2016). Targeted virus detection in next-generation sequencing data using an automated e-probe based approach. Virology, 495, 122–128.

    Article  CAS  PubMed  Google Scholar 

  • Wamaitha, M. J., Nigam, D., Maina, S., Stomeo, F., Wangai, A., Njuguna, J. N., Holton, T. A., Wanjala, B. W., Wamalwa, M., Lucas, T., Djikeng, A., & Garcia-Ruiz, H. (2018). Metagenomic analysis of viruses associated with maize lethal necrosis in Kenya. Virology Journal, 15(1), 90. https://doi.org/10.1186/s12985-018-0999-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, F., Zhao, X., Dong, Q., Zhou, B., & Gao, Z. (2018). Characterization of an RNA silencing suppressor encoded by maize yellow dwarf virus-RMV2. Virus Genes, 54(4), 570–577. https://doi.org/10.1007/s11262-018-1565-0.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F., Zhou, B. G., Gao, Z. L., & Xu, D. F. (2016). A new species of the genus Polerovirus causing symptoms similar to maize yellow dwarf virus-RMV of maize in China. Plant Disease, 100(7), 1508–1508. https://doi.org/10.1094/PDIS-11-15-1259-PDN.

    Article  Google Scholar 

  • Welgemoed, T., Pierneef, R., Sterck, L., Van de Peer, Y., Swart, V., Scheepers, K. D., et al. (2020). De novo assembly of transcriptomes from a B73 maize line introgressed with a QTL for resistance to gray leaf spot disease reveals a candidate allele of a lectin receptor-like kinase. Frontiers in Plant Science, 11(191). https://doi.org/10.3389/fpls.2020.00191.

  • White, E. J., Venter, M., Hiten, N. F., & Burger, J. T. (2008). Modified Cetyltrimethylammonium bromide method improves robustness and versatility: The benchmark for plant RNA extraction. Biotechnology Journal, 3(11), 1424–1428.

    Article  CAS  PubMed  Google Scholar 

  • Wingfield, B. D., Berger, D. K., Steenkamp, E. T., Lim, H.-J., Duong, T. A., Bluhm, B. H., de Beer, Z. W., de Vos, L., Fourie, G., Naidoo, K., Olivier, N., Lin, Y. C., van de Peer, Y., Joubert, F., Crampton, B. G., Swart, V., Soal, N., Tatham, C., van der Nest, M. A., van der Merwe, N. A., van Wyk, S., Wilken, P. M., & Wingfield, M. J. (2017). Draft genome of Cercospora zeina, Fusarium pininemorale, Hawksworthiomyces lignivorus, Huntiella decipiens and Ophiostoma ips. IMA Fungus, 8(2), 385–396. https://doi.org/10.5598/imafungus.2017.08.02.10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yahaya, A., Al Rwahnih, M., Dangora, D., Gregg, L., Alegbejo, M., Lava Kumar, P., et al. (2017). First report of maize yellow mosaic virus infecting sugarcane (Saccharum spp.) and itch grass (Rottboellia cochinchinensis) in Nigeria. Plant Disease, 101(7), 1335, doi:https://doi.org/10.1094/PDIS-03-17-0315-PDN.

Download references

Acknowledgements and funding

This work was funded by the National Research Foundation, South Africa (grant # 98977), the Department of Agriculture Forestry and Fisheries Research and Technology Fund, South Africa (grant # 98617), and the University of Pretoria, South Africa (Genomics Research Institute grant # A0U945). The funding agencies provided financial support only and had no role in the design, execution, interpretation or documentation of this study. The authors thank P. Tongoona and F. Middleton for assistance with maize field trials, local farmers for access to maize field sites, and M.Greve for assistance with Fig. 3.

Availability of data

All data is available in the manuscript and Electronic Supplementary Material. The MaYMV RSA BR1A and MaYMV RSA SCM genome sequences have been deposited in Genbank (Accessions MG570476; MN943641, respectively). RNA-seq data has been deposited at the NCBI GEO (Gene Expression Omnibus) repository (Accessions GSE94442, GSE99005).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed experiments: DKB, GP. Bioinformatics analysis: TW, RP. Sample collection: DKB, SES, GP. Laboratory analyses: TW, SES, DAR. Wrote the manuscript: TW, DKB. Edited the manuscript: GP, RP, SES, DAR.

Corresponding author

Correspondence to Dave K. Berger.

Ethics declarations

The authors declare no conflicts of interest. All authors consent to the submission of this manuscript. The manuscript has been prepared following principles of ethical and professional conduct. The research did not involve human participants or animal subjects, therefore neither statements concerning informed consent nor welfare of animals is applicable.

Electronic supplementary material

ESM 1

(PDF 78 kb)

ESM 2

(PDF 177 kb)

ESM 3

(PDF 287 kb)

ESM 4

(PDF 106 kb)

ESM 5

(PDF 142 kb)

ESM 6

(PDF 156 kb)

ESM 7

(PDF 1314 kb)

ESM 8

(PDF 838 kb)

ESM 9

(XLSX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welgemoed, T., Pierneef, R., Read, D.A. et al. Next generation sequencing reveals past and current widespread occurrence of maize yellow mosaic virus in South Africa. Eur J Plant Pathol 158, 237–249 (2020). https://doi.org/10.1007/s10658-020-02070-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02070-1

Keywords

Navigation